Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
520223999936403198310 ~2001
520250527520250527110 ~2001
520262051104052410310 ~1999
520262051936471691910
520263251104052650310 ~1999
520276271104055254310 ~1999
520276811104055362310 ~1999
520284203104056840710 ~1999
520285523104057104710 ~1999
520315739104063147910 ~1999
520320323104064064710 ~1999
520334939104066987910 ~1999
520373963104074792710 ~1999
520383239104076647910 ~1999
5203943411561183023111 ~2002
520405243520405243110 ~2001
520422839104084567910 ~1999
520423097416338477710 ~2001
520443851104088770310 ~1999
520448849416359079310 ~2001
520454491520454491110 ~2001
520468253312280951910 ~2000
520483141312289884710 ~2000
520483979104096795910 ~1999
520484117312290470310 ~2000
Exponent Prime Factor Digits Year
520485323104097064710 ~1999
520491859520491859110 ~2001
520501417312300850310 ~2000
520511639416409311310 ~2001
520535161312321096710 ~2000
520543619104108723910 ~1999
520568501416454800910 ~2001
520589099104117819910 ~1999
520600207832960331310 ~2001
520606259104121251910 ~1999
520657799104131559910 ~1999
520692863104138572710 ~1999
520693093312415855910 ~2000
520699499104139899910 ~1999
520703399104140679910 ~1999
520706171104141234310 ~1999
520713283520713283110 ~2001
520717357312430414310 ~2000
520729747520729747110 ~2001
520745399104149079910 ~1999
520783223104156644710 ~1999
520786943104157388710 ~1999
520792043104158408710 ~1999
520799231104159846310 ~1999
520829483104165896710 ~1999
Exponent Prime Factor Digits Year
520830743104166148710 ~1999
520835881833337409710 ~2001
520849151104169830310 ~1999
52085755113438124815912 ~2004
520857853312514711910 ~2000
520881743104176348710 ~1999
520882931104176586310 ~1999
520887481312532488710 ~2000
520888079104177615910 ~1999
520915823104183164710 ~1999
520919891104183978310 ~1999
520934591104186918310 ~1999
520952483104190496710 ~1999
520966679104193335910 ~1999
520994759104198951910 ~1999
521006411104201282310 ~1999
52101161910941243999112 ~2004
521018111104203622310 ~1999
521022311104204462310 ~1999
521033917312620350310 ~2000
521039699104207939910 ~1999
521072347521072347110 ~2001
521076541312645924710 ~2000
521080739104216147910 ~1999
5210823371563247011111 ~2002
Exponent Prime Factor Digits Year
521094661312656796710 ~2000
521109203104221840710 ~1999
521125747938026344710 ~2001
5211335511354947232711 ~2002
521142959104228591910 ~1999
521149703104229940710 ~1999
521160973833857556910 ~2001
521172073833875316910 ~2001
521172733833876372910 ~2001
521174413312704647910 ~2000
521176027833881643310 ~2001
521215451104243090310 ~1999
521227631104245526310 ~1999
5212280511355192932711 ~2002
52123097310007634681712 ~2004
521231591104246318310 ~1999
521239781312743868710 ~2000
521252999104250599910 ~1999
521256119104251223910 ~1999
521259841312755904710 ~2000
521270587521270587110 ~2001
521272091104254418310 ~1999
521279257834046811310 ~2001
521285519104257103910 ~1999
521287139104257427910 ~1999
Home
4.768.925 digits
e-mail
25-05-04