Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
5224035891253768613711 ~2002
522406799104481359910 ~1999
5224127631358273183911 ~2002
522418703104483740710 ~1999
522425951104485190310 ~1999
522453539104490707910 ~1999
522476219104495243910 ~1999
522482381417985904910 ~2001
5225004712508002260911 ~2002
522520403104504080710 ~1999
522524399104504879910 ~1999
522533243104506648710 ~1999
5225368572090147428111 ~2002
522548639104509727910 ~1999
522555023104511004710 ~1999
522558671104511734310 ~1999
522561131104512226310 ~1999
522574919104514983910 ~1999
522588263104517652710 ~1999
522589811104517962310 ~1999
5225961891985865518311 ~2002
522682679104536535910 ~1999
522695819104539163910 ~1999
522711803104542360710 ~1999
5227148473449917990311 ~2003
Exponent Prime Factor Digits Year
522715559104543111910 ~1999
522776531104555306310 ~1999
522805373313683223910 ~2000
52282825935134059004912 ~2005
522832259104566451910 ~1999
522836827836538923310 ~2001
522838993313703395910 ~2000
522841523104568304710 ~1999
522867019522867019110 ~2001
522868987522868987110 ~2001
522883919104576783910 ~1999
522906563104581312710 ~1999
522916133313749679910 ~2000
522945617313767370310 ~2000
522958031104591606310 ~1999
522972959104594591910 ~1999
522983603104596720710 ~1999
522987599104597519910 ~1999
522987697836780315310 ~2001
522988183836781092910 ~2001
522992663104598532710 ~1999
523000091104600018310 ~1999
523014053732219674310 ~2001
523028339104605667910 ~1999
523032151523032151110 ~2001
Exponent Prime Factor Digits Year
523034951104606990310 ~1999
523039199104607839910 ~1999
523050023104610004710 ~1999
523057103104611420710 ~1999
523063049418450439310 ~2001
523068779104613755910 ~1999
523074029732303640710 ~2001
523078739104615747910 ~1999
523083611104616722310 ~1999
523090097418472077710 ~2001
5230911372406219230311 ~2002
523098451523098451110 ~2001
523107061836971297710 ~2001
523108403104621680710 ~1999
523148999418519199310 ~2001
523175363104635072710 ~1999
523182899104636579910 ~1999
523189703104637940710 ~1999
523221383104644276710 ~1999
52322380937672114248112 ~2005
523229159104645831910 ~1999
523235711104647142310 ~1999
523237733313942639910 ~2000
523239001313943400710 ~2000
523251791104650358310 ~1999
Exponent Prime Factor Digits Year
523251941313951164710 ~2000
5232521591255805181711 ~2002
5232569992511633595311 ~2002
523261337732565871910 ~2001
523270109418616087310 ~2001
523271939104654387910 ~1999
523281911104656382310 ~1999
523291697313975018310 ~2000
523298837418639069710 ~2001
523300901418640720910 ~2001
523304891104660978310 ~1999
523305983104661196710 ~1999
523310759104662151910 ~1999
523313783104662756710 ~1999
523318261313990956710 ~2000
523321031104664206310 ~1999
523339403104667880710 ~1999
523341503104668300710 ~1999
523344023104668804710 ~1999
523348379104669675910 ~1999
523353979523353979110 ~2001
523357319104671463910 ~1999
523360151104672030310 ~1999
523366601314019960710 ~2000
523367051104673410310 ~1999
Home
4.768.925 digits
e-mail
25-05-04