Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
507196463101439292710 ~1999
507209051101441810310 ~1999
507214979101442995910 ~1999
507221471101444294310 ~1999
507249551101449910310 ~1999
5072687931217445103311 ~2002
507290099101458019910 ~1999
507313361304388016710 ~2000
507316553304389931910 ~2000
507317159101463431910 ~1999
507320641811713025710 ~2001
507331633811730612910 ~2001
507351263101470252710 ~1999
507396959101479391910 ~1999
507401423101480284710 ~1999
507413999101482799910 ~1999
507427751101485550310 ~1999
507432613304459567910 ~2000
507447131101489426310 ~1999
507455579101491115910 ~1999
507462491405969992910 ~2000
507469003811950404910 ~2001
507470699101494139910 ~1999
507491639101498327910 ~1999
507493799101498759910 ~1999
Exponent Prime Factor Digits Year
507522863101504572710 ~1999
507527771101505554310 ~1999
5075372574872357667311 ~2003
507538403101507680710 ~1999
507561479101512295910 ~1999
507562343101512468710 ~1999
507566483101513296710 ~1999
507568417304541050310 ~2000
507575459101515091910 ~1999
507580163101516032710 ~1999
507584459101516891910 ~1999
507626351101525270310 ~1999
507630017304578010310 ~2000
507641081304584648710 ~2000
507653879101530775910 ~1999
507659699101531939910 ~1999
507660317304596190310 ~2000
507661391101532278310 ~1999
507672703812276324910 ~2001
507688931101537786310 ~1999
507715199101543039910 ~1999
507729791406183832910 ~2000
507745727913942308710 ~2001
507752123101550424710 ~1999
507754007406203205710 ~2000
Exponent Prime Factor Digits Year
507770621406216496910 ~2000
507799079101559815910 ~1999
5078034974874913571311 ~2003
507808043101561608710 ~1999
507814211101562842310 ~1999
507828361304697016710 ~2000
507857579101571515910 ~1999
507877631101575526310 ~1999
507890951101578190310 ~1999
507894743101578948710 ~1999
50790385711377046396912 ~2004
507946151101589230310 ~1999
507947711101589542310 ~1999
507950299507950299110 ~2001
507953003101590600710 ~1999
507978847507978847110 ~2001
507979583101595916710 ~1999
507980243101596048710 ~1999
507981503101596300710 ~1999
507984839101596967910 ~1999
508008097304804858310 ~2000
508013333304807999910 ~2000
508018799101603759910 ~1999
508047493304828495910 ~2000
50804967121947745787312 2005
Exponent Prime Factor Digits Year
508088303101617660710 ~1999
508098443101619688710 ~1999
508113899101622779910 ~1999
508115107508115107110 ~2001
508117619101623523910 ~1999
508138583101627716710 ~1999
508141919101628383910 ~1999
508145483101629096710 ~1999
508154173304892503910 ~2000
508159871101631974310 ~1999
50818248736284229571912 2005
508184063101636812710 ~1999
508196099101639219910 ~1999
508264703101652940710 ~1999
508272119101654423910 ~1999
508313423101662684710 ~1999
508317311101663462310 ~1999
508321223101664244710 ~1999
508336343101667268710 ~1999
508337717305002630310 ~2000
508352219101670443910 ~1999
5083598531220063647311 ~2002
508360597305016358310 ~2000
508369223101673844710 ~1999
5083692431220086183311 ~2002
Home
4.768.925 digits
e-mail
25-05-04