Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
508387991101677598310 ~1999
508399571101679914310 ~1999
508402211101680442310 ~1999
508406039101681207910 ~1999
508406219101681243910 ~1999
508406341305043804710 ~2000
508410251101682050310 ~1999
50841095313727095731112 ~2004
508412699101682539910 ~1999
508426733305056039910 ~2000
508428983101685796710 ~1999
508453301305071980710 ~2000
508511579101702315910 ~1999
508550519101710103910 ~1999
508557443101711488710 ~1999
508563661305138196710 ~2000
508568843101713768710 ~1999
508586657406869325710 ~2000
508587263101717452710 ~1999
508590587406872469710 ~2000
508600139101720027910 ~1999
508601501305160900710 ~2000
508605551101721110310 ~1999
508611011101722202310 ~1999
508640843101728168710 ~1999
Exponent Prime Factor Digits Year
508643693305186215910 ~2000
508656557305193934310 ~2000
508658879101731775910 ~1999
508669883101733976710 ~1999
508687559101737511910 ~1999
508700399101740079910 ~1999
508736699101747339910 ~1999
508751879101750375910 ~1999
508771031101754206310 ~1999
508777891508777891110 ~2001
508790591101758118310 ~1999
508802681407042144910 ~2000
508805723101761144710 ~1999
508807763101761552710 ~1999
5088085696105702828111 ~2003
5088213772747635435911 ~2002
508830853305298511910 ~2000
508847263814155620910 ~2001
508849613305309767910 ~2000
508852919101770583910 ~1999
508853641305312184710 ~2000
508853903101770780710 ~1999
508879571101775914310 ~1999
508887959101777591910 ~1999
508929539101785907910 ~1999
Exponent Prime Factor Digits Year
508972463101794492710 ~1999
508983019508983019110 ~2001
509020703101804140710 ~1999
509022623101804524710 ~1999
509036903101807380710 ~1999
509041139101808227910 ~1999
509044799101808959910 ~1999
509051897407241517710 ~2000
509060459101812091910 ~1999
509072171101814434310 ~1999
509074151101814830310 ~1999
5091036111323669388711 ~2002
509159879101831975910 ~1999
509171111101834222310 ~1999
509184757814695611310 ~2001
509186939101837387910 ~1999
509190191101838038310 ~1999
509197043101839408710 ~1999
509204099101840819910 ~1999
509204963101840992710 ~1999
509226701407381360910 ~2000
509233379101846675910 ~1999
509236943101847388710 ~1999
509256311101851262310 ~1999
509293619101858723910 ~1999
Exponent Prime Factor Digits Year
5093105531222345327311 ~2002
509313503101862700710 ~1999
509313719407450975310 ~2000
5093260931120517404711 ~2002
509327183101865436710 ~1999
509332331101866466310 ~1999
50934068336672529176112 ~2005
509357759101871551910 ~1999
509363411101872682310 ~1999
509378357305627014310 ~2000
509386949407509559310 ~2000
509388179101877635910 ~1999
509390963101878192710 ~1999
509395151101879030310 ~1999
509397989713157184710 ~2001
509402759101880551910 ~1999
509421551101884310310 ~1999
509430923101886184710 ~1999
509441519101888303910 ~1999
509443463101888692710 ~1999
5094468011120782962311 ~2002
509461919101892383910 ~1999
509465113305679067910 ~2000
509482997407586397710 ~2000
509506703101901340710 ~1999
Home
4.768.925 digits
e-mail
25-05-04