Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2899402915798805839 ~1997
289943749869831247110 ~2000
2899479791159791916111 ~2000
289965197231972157710 ~1999
289966799231973439310 ~1999
2899676035799352079 ~1997
289971637173982982310 ~1998
2899726915799453839 ~1997
289975547695941312910 ~2000
2899878715799757439 ~1997
289988651231990920910 ~1999
2899940635799881279 ~1997
290000057174000034310 ~1998
2900010595800021199 ~1997
290005811928018595310 ~2000
290021737174013042310 ~1998
290029111464046577710 ~1999
2900308315800616639 ~1997
290042843928137097710 ~2000
290047987464076779310 ~1999
2900517715801035439 ~1997
290062273174037363910 ~1998
290062967232050373710 ~1999
290076013174045607910 ~1998
290076953406107734310 ~1999
Exponent Prime Factor Digits Year
2900810035801620079 ~1997
2900858995801717999 ~1997
2901023035802046079 ~1997
290107177174064306310 ~1998
2901178195802356399 ~1997
290120053870360159110 ~2000
290122453174073471910 ~1998
290138897174083338310 ~1998
290143697174086218310 ~1998
2901465835802931679 ~1997
2901473395802946799 ~1997
2901531835803063679 ~1997
2901646435803292879 ~1997
2901664971102632688711 ~2000
2901722515803445039 ~1997
2901760871392845217711 ~2000
290181949696436677710 ~2000
2901895915803791839 ~1997
2901980635803961279 ~1997
290211241174126744710 ~1998
2902116115804232239 ~1997
2902153795804307599 ~1997
2902171315804342639 ~1997
290226641174135984710 ~1998
2902318915804637839 ~1997
Exponent Prime Factor Digits Year
290232797406325915910 ~1999
290233663290233663110 ~1999
290234513174140707910 ~1998
2902405795804811599 ~1997
290243299290243299110 ~1999
2902597435805194879 ~1997
2902649515805299039 ~1997
290273881174164328710 ~1998
2902795795805591599 ~1997
290280827232224661710 ~1999
290285833174171499910 ~1998
2902886395805772799 ~1997
2902894795805789599 ~1997
2902908595805817199 ~1997
290293727232234981710 ~1999
290296417464474267310 ~1999
2902987795805975599 ~1997
2903018995806037999 ~1997
2903109412961171598311 ~2001
290317751232254200910 ~1999
2903210395806420799 ~1997
2903220232612898207111 ~2001
2903276995806553999 ~1997
290328509232262807310 ~1999
2903316835806633679 ~1997
Exponent Prime Factor Digits Year
290345981174207588710 ~1998
2903558395807116799 ~1997
290365093174219055910 ~1998
290369819232295855310 ~1999
2903719976504332732911 ~2002
290377097174226258310 ~1998
2903782795807565599 ~1997
290378797174227278310 ~1998
290387717174232630310 ~1998
2904029395808058799 ~1997
2904030235808060479 ~1997
2904076195808152399 ~1997
2904149635808299279 ~1997
290416013174249607910 ~1998
290428511232342808910 ~1999
290439797232351837710 ~1999
290449961232359968910 ~1999
2904512515809025039 ~1997
290453659522816586310 ~1999
2904567235809134479 ~1997
2904570715809141439 ~1997
2904638635809277279 ~1997
2904656631917073375911 ~2001
2904888235809776479 ~1997
2904973915809947839 ~1997
Home
5.187.277 digits
e-mail
25-11-17