Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
501334271100266854310 ~1999
501344303100268860710 ~1999
501360971100272194310 ~1999
501362417701907383910 ~2001
501364403100272880710 ~1999
501390479100278095910 ~1999
501391043100278208710 ~1999
501391571100278314310 ~1999
501394643100278928710 ~1999
501399791100279958310 ~1999
501402563100280512710 ~1999
501409511100281902310 ~1999
501430511100286102310 ~1999
501455231100291046310 ~1999
501468743100293748710 ~1999
501513203100302640710 ~1999
501514451100302890310 ~1999
5015248312407319188911 ~2002
501538601300923160710 ~2000
501563123100312624710 ~1999
501568271100313654310 ~1999
501575351100315070310 ~1999
501600299100320059910 ~1999
501606353300963811910 ~2000
501608543100321708710 ~1999
Exponent Prime Factor Digits Year
501612239100322447910 ~1999
501623459100324691910 ~1999
501632303100326460710 ~1999
501638999100327799910 ~1999
501639191100327838310 ~1999
501639569702295396710 ~2001
501640523100328104710 ~1999
501657833702320966310 ~2001
501660359100332071910 ~1999
501678113301006867910 ~2000
501679631100335926310 ~1999
501696059100339211910 ~1999
501713711100342742310 ~1999
501714491100342898310 ~1999
501722393301033435910 ~2000
501736441301041864710 ~2000
501758171401406536910 ~2000
501764531100352906310 ~1999
501766931100353386310 ~1999
501775871100355174310 ~1999
501785773301071463910 ~2000
501788051100357610310 ~1999
501788411100357682310 ~1999
501789083100357816710 ~1999
501808739100361747910 ~1999
Exponent Prime Factor Digits Year
501811319100362263910 ~1999
501812039100362407910 ~1999
501814283100362856710 ~1999
501821231100364246310 ~1999
501830711100366142310 ~1999
5018421833713632154311 ~2003
501869833301121899910 ~2000
501918359100383671910 ~1999
5019351973212385260911 ~2003
501939803100387960710 ~1999
501953807401563045710 ~2000
501984377301190626310 ~2000
501998723100399744710 ~1999
502003127401602501710 ~2000
502010303100402060710 ~1999
502016267401613013710 ~2000
502037051100407410310 ~1999
502055243100411048710 ~1999
502083551100416710310 ~1999
502084061301250436710 ~2000
502084397301250638310 ~2000
502085189702919264710 ~2001
502107143100421428710 ~1999
502120631100424126310 ~1999
502133279100426655910 ~1999
Exponent Prime Factor Digits Year
502138157301282894310 ~2000
502139303100427860710 ~1999
502143281401714624910 ~2000
502154519100430903910 ~1999
502178279100435655910 ~1999
502209797703093715910 ~2001
502244761301346856710 ~2000
502246937401797549710 ~2000
502255261301353156710 ~2000
502301699100460339910 ~1999
502313641301388184710 ~2000
502323863100464772710 ~1999
502324379100464875910 ~1999
502363271100472654310 ~1999
502366141301419684710 ~2000
502372567502372567110 ~2001
502377341301426404710 ~2000
502391657401913325710 ~2000
502393343100478668710 ~1999
502444451100488890310 ~1999
502453799100490759910 ~1999
502453877703435427910 ~2001
502459703100491940710 ~1999
502466171100493234310 ~1999
502467653301480591910 ~2000
Home
4.768.925 digits
e-mail
25-05-04