Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
500113643100022728710 ~1999
500145731100029146310 ~1999
500175023100035004710 ~1999
500176283100035256710 ~1999
500206361300123816710 ~2000
500206823100041364710 ~1999
500206879500206879110 ~2001
500211611100042322310 ~1999
500235139500235139110 ~2001
5002419537603677685711 ~2004
500289059100057811910 ~1999
500294243100058848710 ~1999
500297159100059431910 ~1999
500305097300183058310 ~2000
500305343100061068710 ~1999
500309633300185779910 ~2000
500323091100064618310 ~1999
500338151400270520910 ~2000
500343323100068664710 ~1999
500347499100069499910 ~1999
500365813300219487910 ~2000
500371919100074383910 ~1999
500385659100077131910 ~1999
500396591400317272910 ~2000
500412977400330381710 ~2000
Exponent Prime Factor Digits Year
500453951100090790310 ~1999
5004652211101023486311 ~2001
500498039100099607910 ~1999
5005188612402490532911 ~2002
500528579100105715910 ~1999
500539631100107926310 ~1999
500550191100110038310 ~1999
500550293300330175910 ~2000
500550593300330355910 ~2000
500596133300357679910 ~2000
500602559100120511910 ~1999
500621483100124296710 ~1999
500624759100124951910 ~1999
500626559100125311910 ~1999
500646479100129295910 ~1999
500652863100130572710 ~1999
500654939100130987910 ~1999
500660411100132082310 ~1999
500666819100133363910 ~1999
500683523100136704710 ~1999
500689583100137916710 ~1999
500689793300413875910 ~2000
500693951100138790310 ~1999
500698343100139668710 ~1999
500701583100140316710 ~1999
Exponent Prime Factor Digits Year
500702063100140412710 ~1999
500712431100142486310 ~1999
500722843500722843110 ~2001
500724083100144816710 ~1999
500728379100145675910 ~1999
500743343100148668710 ~1999
500750543100150108710 ~1999
500762191801219505710 ~2001
500765411100153082310 ~1999
500768843100153768710 ~1999
500779991100155998310 ~1999
500797019100159403910 ~1999
500816531100163306310 ~1999
500820973300492583910 ~2000
500840279400672223310 ~2000
500846737801354779310 ~2001
500853179100170635910 ~1999
500853659100170731910 ~1999
500867539500867539110 ~2001
500887979400710383310 ~2000
500888471100177694310 ~1999
5009001231202160295311 ~2002
500900723100180144710 ~1999
500921051100184210310 ~1999
500925263100185052710 ~1999
Exponent Prime Factor Digits Year
500945663100189132710 ~1999
500960219400768175310 ~2000
500970191400776152910 ~2000
500981291100196258310 ~1999
500993117400794493710 ~2000
501013391100202678310 ~1999
501049403100209880710 ~1999
501063743100212748710 ~1999
501066479100213295910 ~1999
501080351100216070310 ~1999
501084917300650950310 ~2000
501094259100218851910 ~1999
5011077131503323139111 ~2002
501111323100222264710 ~1999
501112679100222535910 ~1999
501201923100240384710 ~1999
501211979100242395910 ~1999
501236231100247246310 ~1999
501272483100254496710 ~1999
501280463100256092710 ~1999
501285899100257179910 ~1999
501292283100258456710 ~1999
501305891100261178310 ~1999
501309491100261898310 ~1999
501328991100265798310 ~1999
Home
4.768.925 digits
e-mail
25-05-04