Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
502472843100494568710 ~1999
502501679100500335910 ~1999
502505957301503574310 ~2000
502508353301505011910 ~2000
5025139971909553188711 ~2002
5025246672010098668111 ~2002
502528343100505668710 ~1999
5025291792010116716111 ~2002
502529243100505848710 ~1999
502536941301522164710 ~2000
502541113301524667910 ~2000
502543667402034933710 ~2000
502545119100509023910 ~1999
502550519100510103910 ~1999
502553699100510739910 ~1999
502581479100516295910 ~1999
502585877301551526310 ~2000
502595759100519151910 ~1999
502601843100520368710 ~1999
502612391100522478310 ~1999
502624319100524863910 ~1999
502630151402104120910 ~2000
502643171100528634310 ~1999
502650371100530074310 ~1999
502682711100536542310 ~1999
Exponent Prime Factor Digits Year
502711277301626766310 ~2000
502748399100549679910 ~1999
502779161402223328910 ~2000
502780823100556164710 ~1999
502792817402234253710 ~2000
502800317402240253710 ~2000
5028053633720759686311 ~2003
502807523100561504710 ~1999
502856423100571284710 ~1999
502867451100573490310 ~1999
502880501301728300710 ~2000
502884023100576804710 ~1999
502910399100582079910 ~1999
502911973301747183910 ~2000
502913003100582600710 ~1999
502913137301747882310 ~2000
5029153391206996813711 ~2002
502920371100584074310 ~1999
502938031502938031110 ~2001
502951019100590203910 ~1999
5029601931508880579111 ~2002
502963757402371005710 ~2000
502991831100598366310 ~1999
502994819100598963910 ~1999
503010917301806550310 ~2000
Exponent Prime Factor Digits Year
503017469402413975310 ~2000
503018783100603756710 ~1999
503018801402415040910 ~2000
503030239503030239110 ~2001
503030351100606070310 ~1999
503038511402430808910 ~2000
503044499100608899910 ~1999
503047397301828438310 ~2000
503051891100610378310 ~1999
503056523100611304710 ~1999
503057099100611419910 ~1999
503075519100615103910 ~1999
503097971100619594310 ~1999
503111783100622356710 ~1999
503119543503119543110 ~2001
503122597301873558310 ~2000
5031243192012497276111 ~2002
5031272532716887166311 ~2002
503133971100626794310 ~1999
503150363100630072710 ~1999
503156519100631303910 ~1999
5031661993622796632911 ~2003
503190887402552709710 ~2000
503216963100643392710 ~1999
503231699100646339910 ~1999
Exponent Prime Factor Digits Year
503237699100647539910 ~1999
503240123100648024710 ~1999
503256419100651283910 ~1999
503256881402605504910 ~2000
503278843805246148910 ~2001
503291077301974646310 ~2000
503296151100659230310 ~1999
503301221402640976910 ~2000
503302519503302519110 ~2001
503314499100662899910 ~1999
503326163100665232710 ~1999
503329811100665962310 ~1999
503338163100667632710 ~1999
503342159100668431910 ~1999
5033630416342374316711 ~2003
503382337302029402310 ~2000
503393603100678720710 ~1999
503398589704758024710 ~2001
503399641302039784710 ~2000
503408459100681691910 ~1999
503414399100682879910 ~1999
5034447971510334391111 ~2002
503452259100690451910 ~1999
503454121302072472710 ~2000
503492413302095447910 ~2000
Home
4.768.925 digits
e-mail
25-05-04