Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4811632199623264399 ~1999
4811773799623547599 ~1999
4811901239623802479 ~1999
481198961288719376710 ~2000
4812012239624024479 ~1999
4812015599624031199 ~1999
4812227519624455039 ~1999
4812463731539988393711 ~2002
4812581399625162799 ~1999
4812689999625379999 ~1999
481296241288777744710 ~2000
4813018199626036399 ~1999
481305653288783391910 ~2000
481310971481310971110 ~2001
4813191239626382479 ~1999
4813252911251445756711 ~2002
481331287481331287110 ~2001
4813535999627071999 ~1999
4813546199627092399 ~1999
481360949673905328710 ~2001
481361849385089479310 ~2000
481381577385105261710 ~2000
481384081288830448710 ~2000
4814002919628005839 ~1999
4814132399628264799 ~1999
Exponent Prime Factor Digits Year
481420837288852502310 ~2000
481425793288855475910 ~2000
4814263439628526879 ~1999
4814359439628718879 ~1999
481476713288886027910 ~2000
481478273288886963910 ~2000
481488361288893016710 ~2000
481492633288895579910 ~2000
481502971481502971110 ~2001
4815291599630583199 ~1999
4815295799630591599 ~1999
4815324839630649679 ~1999
4815486599630973199 ~1999
4815589439631178879 ~1999
4815922319631844639 ~1999
481592933288955759910 ~2000
481599431385279544910 ~2000
4816033799632067599 ~1999
4816544999633089999 ~1999
4816893599633787199 ~1999
4816991211445097363111 ~2002
481708769385367015310 ~2000
481729141289037484710 ~2000
48175104120811644971312 ~2005
481756981289054188710 ~2000
Exponent Prime Factor Digits Year
4817625599635251199 ~1999
481776137289065682310 ~2000
4817925839635851679 ~1999
4818071039636142079 ~1999
481833007481833007110 ~2001
481840553289104331910 ~2000
481841573674578202310 ~2001
4818515639637031279 ~1999
4818591599637183199 ~1999
4818620999637241999 ~1999
4818687599637375199 ~1999
481887071385509656910 ~2000
481887331867397195910 ~2001
481910921289146552710 ~2000
481915451385532360910 ~2000
481950037289170022310 ~2000
4819659239639318479 ~1999
4819663199639326399 ~1999
4819753919639507839 ~1999
4819901639639803279 ~1999
4820004239640008479 ~1999
482005891867610603910 ~2001
4820134319640268639 ~1999
482033371482033371110 ~2001
482041453289224871910 ~2000
Exponent Prime Factor Digits Year
4820468639640937279 ~1999
4820478599640957199 ~1999
4820771039641542079 ~1999
4820938199641876399 ~1999
482102353289261411910 ~2000
482103521385682816910 ~2000
4821081119642162239 ~1999
4821184439642368879 ~1999
4821335399642670799 ~1999
4821387719642775439 ~1999
4821488999642977999 ~1999
482151407385721125710 ~2000
482152711482152711110 ~2001
482156957289294174310 ~2000
482163001289297800710 ~2000
482171317289302790310 ~2000
4821849599643699199 ~1999
482193241289315944710 ~2000
4821994919643989839 ~1999
4822090439644180879 ~1999
4822113112411056555111 ~2002
4822199999644399999 ~1999
4822200599644401199 ~1999
4822299119644598239 ~1999
482235301771576481710 ~2001
Home
4.768.925 digits
e-mail
25-05-04