Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
274240237164544142310 ~1998
2742475795484951599 ~1997
2742481795484963599 ~1997
2742538915485077839 ~1997
2742555715485111439 ~1997
2742557995485115999 ~1997
2742683395485366799 ~1997
2742898315485796639 ~1997
274291387438866219310 ~1999
274304893164582935910 ~1998
2743095595486191199 ~1997
2743146715486293439 ~1997
2743164595486329199 ~1997
274317733603499012710 ~1999
2743184635486369279 ~1997
274320533384048746310 ~1999
274332637164599582310 ~1998
2743424995486849999 ~1997
274366357164619814310 ~1998
274373717164624230310 ~1998
274375457164625274310 ~1998
2743865035487730079 ~1997
2743885915487771839 ~1997
274389067274389067110 ~1999
274392361164635416710 ~1998
Exponent Prime Factor Digits Year
2743946395487892799 ~1997
274402837439044539310 ~1999
274406221164643732710 ~1998
274421099219536879310 ~1998
2744254915488509839 ~1997
2744324395488648799 ~1997
2744356315488712639 ~1997
2744376595488753199 ~1997
2744419435488838879 ~1997
2744517772195614216111 ~2001
274453759274453759110 ~1999
274464761164678856710 ~1998
2744653195489306399 ~1997
2744685835489371679 ~1997
2744686435489372879 ~1997
274471997164683198310 ~1998
274484257164690554310 ~1998
2744870395489740799 ~1997
2744910115489820239 ~1997
274494329384292060710 ~1999
274502441164701464710 ~1998
2745035635490071279 ~1997
2745052435490104879 ~1997
2745081835490163679 ~1997
2745083035490166079 ~1997
Exponent Prime Factor Digits Year
2745099235490198479 ~1997
274512197823536591110 ~2000
2745153595490307199 ~1997
274517323274517323110 ~1999
2745270835490541679 ~1997
2745325491043223686311 ~2000
2745325915490651839 ~1997
2745370795490741599 ~1997
274538633164723179910 ~1998
2745420115490840239 ~1997
2745437995490875999 ~1997
2745470995490941999 ~1997
2745566035491132079 ~1997
274559357219647485710 ~1998
2745645235491290479 ~1997
2745724435491448879 ~1997
2745803035491606079 ~1997
2745912835491825679 ~1997
2745916315491832639 ~1997
2745933115491866239 ~1997
2745949795491899599 ~1997
274599217164759530310 ~1998
2746087915492175839 ~1997
2746096931263204587911 ~2000
2746302835492605679 ~1997
Exponent Prime Factor Digits Year
2746428835492857679 ~1997
2746517395493034799 ~1997
2746554715493109439 ~1997
274658837164795302310 ~1998
2746647595493295199 ~1997
2746649635493299279 ~1997
2746659715493319439 ~1997
2746660435493320879 ~1997
2746732195493464399 ~1997
2746888315493776639 ~1997
2746916035493832079 ~1997
2747039635494079279 ~1997
2747107915494215839 ~1997
274722979274722979110 ~1999
2747278195494556399 ~1997
2747464493022210939111 ~2001
2747541715495083439 ~1997
274786439659487453710 ~2000
2747907235495814479 ~1997
2747950195495900399 ~1997
2747950915495901839 ~1997
2748003715496007439 ~1997
27480277127919961533712 ~2004
2748028315496056639 ~1997
2748031435496062879 ~1997
Home
5.307.017 digits
e-mail
26-01-11