Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3047836916095673839 ~1997
3047949236095898479 ~1997
3047969516095939039 ~1997
3048034671706899415311 ~2001
3048087116096174239 ~1997
3048286196096572399 ~1997
3048301916096603839 ~1997
3048371036096742079 ~1997
304837133182902279910 ~1998
304838201243870560910 ~1999
3048385196096770399 ~1997
30484370910486623589712 ~2003
3048503876828648668911 ~2002
3048653036097306079 ~1997
304865423792650099910 ~2000
304893073182935843910 ~1998
3048974516097949039 ~1997
304901393182940835910 ~1998
3049016996098033999 ~1997
3049052396098104799 ~1997
3049158836098317679 ~1997
3049176116098352239 ~1997
304925017182955010310 ~1998
3049280516098561039 ~1997
3049321916098643839 ~1997
Exponent Prime Factor Digits Year
304942709243954167310 ~1999
3049643396099286799 ~1997
3049792196099584399 ~1997
3049873796099747599 ~1997
3049941596099883199 ~1997
3050183036100366079 ~1997
305020609732049461710 ~2000
3050294516100589039 ~1997
3050295596100591199 ~1997
305040641183024384710 ~1998
3050417396100834799 ~1997
305044307549079752710 ~2000
305057309244045847310 ~1999
3050581796101163599 ~1997
3050600396101200799 ~1997
3050684996101369999 ~1997
3050741516101483039 ~1997
305075257732180616910 ~2000
3050804036101608079 ~1997
3050833196101666399 ~1997
3051037316102074639 ~1997
305108813427152338310 ~1999
305112077732268984910 ~2000
305113667244090933710 ~1999
3051241916102483839 ~1997
Exponent Prime Factor Digits Year
3051263516102527039 ~1997
305126593183075955910 ~1998
3051419396102838799 ~1997
3051458396102916799 ~1997
3051467396102934799 ~1997
305147189732353253710 ~2000
3051530036103060079 ~1997
305175901915527703110 ~2000
305179261183107556710 ~1998
305183357183110014310 ~1998
305191199244152959310 ~1999
3052046511281859534311 ~2001
3052060436104120879 ~1997
3052081196104162399 ~1997
3052117436104234879 ~1997
3052287836104575679 ~1997
3052299716104599439 ~1997
3052348611159892471911 ~2000
3052378796104757599 ~1997
305246017183147610310 ~1998
3052545716105091439 ~1997
3052602716105205439 ~1997
305268251244214600910 ~1999
3052815236105630479 ~1997
3052817996105635999 ~1997
Exponent Prime Factor Digits Year
305302037183181222310 ~1998
3053058596106117199 ~1997
3053110091465492843311 ~2001
3053140436106280879 ~1997
3053147036106294079 ~1997
3053169836106339679 ~1997
3053177636106355279 ~1997
3053250716106501439 ~1997
305325071244260056910
3053318396106636799 ~1997
3053327636106655279 ~1997
3053337836106675679 ~1997
3053348036106696079 ~1997
3053604116107208239 ~1997
3053606036107212079 ~1997
3053623916107247839 ~1997
3053737916107475839 ~1997
305375219244300175310 ~1999
3053808716107617439 ~1997
3053859116107718239 ~1997
305390681244312544910 ~1999
305394757183236854310 ~1998
3054013316108026639 ~1997
3054099836108199679 ~1997
305411791488658865710 ~1999
Home
5.187.277 digits
e-mail
25-11-17