Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4288236838576473679 ~1998
4288265398576530799 ~1998
428832311343065848910 ~2000
4288415518576831039 ~1998
4288561198577122399 ~1998
428859533257315719910 ~2000
4288986118577972239 ~1998
4289023438578046879 ~1998
428912381257347428710 ~2000
428914177257348506310 ~2000
42891674317842936508912 ~2004
428940977257364586310 ~2000
4289605798579211599 ~1998
429000947772201704710 ~2001
4290182638580365279 ~1998
429020819343216655310 ~2000
4290325318580650639 ~1998
4290432919696378376711 ~2003
4290639838581279679 ~1998
429064477257438686310 ~2000
429073877343259101710 ~2000
429087433257452459910 ~2000
4290895198581790399 ~1998
4291020598582041199 ~1998
429106409343285127310 ~2000
Exponent Prime Factor Digits Year
4291121638582243279 ~1998
4291143598582287199 ~1998
4291292518582585039 ~1998
429143593257486155910 ~2000
429146477343317181710 ~2000
4291552318583104639 ~1998
4291593598583187199 ~1998
4291611718583223439 ~1998
4291624911115822476711 ~2001
4291765918583531839 ~1998
429227377257536426310 ~2000
429235559343388447310 ~2000
4292411931373571817711 ~2001
429244801257546880710 ~2000
4292605198585210399 ~1998
429270067686832107310 ~2001
4292814838585629679 ~1998
429293651343434920910 ~2000
429295397257577238310 ~2000
429295847772732524710 ~2001
429315521343452416910 ~2000
4293330838586661679 ~1998
4293363718586727439 ~1998
429343157343474525710 ~2000
4293449398586898799 ~1998
Exponent Prime Factor Digits Year
4293482398586964799 ~1998
4293729598587459199 ~1998
429392863429392863110 ~2000
429421409343537127310 ~2000
4294419838588839679 ~1998
429449341257669604710 ~2000
4294591198589182399 ~1998
429459509343567607310 ~2000
429459827773027688710 ~2001
4294625038589250079 ~1998
4294628518589257039 ~1998
429482071429482071110 ~2000
4294848831116660695911 ~2001
429485801257691480710 ~2000
4294869838589739679 ~1998
4294967518589935039 ~1998
429498779773097802310 ~2001
429500387773100696710 ~2001
4295036391030808733711 ~2001
4295157838590315679 ~1998
429519427687231083310 ~2001
429543713257726227910 ~2000
429543787773178816710 ~2001
4295446318590892639 ~1998
4295500872835030574311 ~2002
Exponent Prime Factor Digits Year
4295508118591016239 ~1998
429591517257754910310 ~2000
4296080518592161039 ~1998
4296111118592222239 ~1998
429641999343713599310 ~2000
4296505198593010399 ~1998
429670301257802180710 ~2000
429677561257806536710 ~2000
429681673687490676910 ~2001
4296878998593757999 ~1998
4296916791375013372911 ~2001
429698323687517316910 ~2001
429706561687530497710 ~2001
4297570438595140879 ~1998
4297618798595237599 ~1998
4297726438595452879 ~1998
4297916518595833039 ~1998
429812137257887282310 ~2000
4298168518596337039 ~1998
4298278198596556399 ~1998
4298320438596640879 ~1998
4298368438596736879 ~1998
429842797257905678310 ~2000
4298456398596912799 ~1998
4298563198597126399 ~1998
Home
4.768.925 digits
e-mail
25-05-04