Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3793384197586768399 ~1998
3793576917587153839 ~1998
3793738317587476639 ~1998
3793875837587751679 ~1998
3794036397588072799 ~1998
3794114637588229279 ~1998
3794154233414738807111 ~2002
379420781303536624910 ~1999
3794258997588517999 ~1998
379431593227658955910 ~1999
3794388837588777679 ~1998
379451201227670720710 ~1999
3794750517589501039 ~1998
3794893437589786879 ~1998
3794935317589870639 ~1998
379530181227718108710 ~1999
3795327117590654239 ~1998
3795346917590693839 ~1998
3795466197590932399 ~1998
379558733531382226310 ~2000
379572497227743498310 ~1999
379578307379578307110 ~2000
379610947683299704710 ~2000
379614343379614343110 ~2000
379621357227772814310 ~1999
Exponent Prime Factor Digits Year
3796283397592566799 ~1998
3796356717592713439 ~1998
3796583173568788179911 ~2002
3796589637593179279 ~1998
379693877303755101710 ~1999
3797009037594018079 ~1998
3797058117594116239 ~1998
3797109597594219199 ~1998
3797303037594606079 ~1998
3797306517594613039 ~1998
3797466237594932479 ~1998
3797509917595019839 ~1998
3797518437595036879 ~1998
3797522037595044079 ~1998
3797736237595472479 ~1998
3797792997595585999 ~1998
3797828997595657999 ~1998
3797894397595788799 ~1998
3798000597596001199 ~1998
3798013797596027599 ~1998
379803997227882398310 ~1999
3798053397596106799 ~1998
3798059037596118079 ~1998
3798079437596158879 ~1998
3798108117596216239 ~1998
Exponent Prime Factor Digits Year
3798132237596264479 ~1998
3798157437596314879 ~1998
3798197997596395999 ~1998
3798385797596771599 ~1998
3798421931519368772111 ~2001
379845677303876541710 ~1999
3798460917596921839 ~1998
3798802797597605599 ~1998
379881809911716341710 ~2001
379883453227930071910 ~1999
3799098117598196239 ~1998
3799106037598212079 ~1998
3799131011139739303111 ~2001
3799175637598351279 ~1998
379921147683858064710 ~2000
3799268891519707556111 ~2001
3799544997599089999 ~1998
379961077911906584910 ~2001
3799765437599530879 ~1998
3799780197599560399 ~1998
3799841037599682079 ~1998
379984741227990844710 ~1999
3799946637599893279 ~1998
3799977717599955439 ~1998
380001487380001487110 ~2000
Exponent Prime Factor Digits Year
3800212317600424639 ~1998
3800356197600712399 ~1998
3800357517600715039 ~1998
3800386197600772399 ~1998
380062799684113038310 ~2000
3800718597601437199 ~1998
380082841228049704710 ~1999
3800888997601777999 ~1998
3800898837601797679 ~1998
3800922597601845199 ~1998
380097181228058308710 ~1999
3800990037601980079 ~1998
380102419380102419110 ~2000
3801186597602373199 ~1998
3801324717602649439 ~1998
380138401228083040710 ~1999
3801390597602781199 ~1998
3801454437602908879 ~1998
3801597771140479331111 ~2001
380162879304130303310 ~1999
3801690597603381199 ~1998
3801875517603751039 ~1998
3801927597603855199 ~1998
380201813228121087910 ~1999
3802068117604136239 ~1998
Home
4.768.925 digits
e-mail
25-05-04