Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
404732401242839440710 ~1999
4047345598094691199 ~1998
404738813566634338310 ~2000
404741153242844691910 ~1999
404750713242850427910 ~1999
404752717242851630310 ~1999
4047736798095473599 ~1998
404774753971459407310 ~2001
4047817438095634879 ~1998
4047890398095780799 ~1998
4047977518095955039 ~1998
404799917323839933710 ~2000
4048055398096110799 ~1998
4048060438096120879 ~1998
4048154038096308079 ~1998
4048424398096848799 ~1998
4048507798097015599 ~1998
4048677838097355679 ~1998
4048813918097627839 ~1998
4049004238098008479 ~1998
404920409971808981710 ~2001
404922361242953416710 ~1999
4049384638098769279 ~1998
4049607718099215439 ~1998
4049619718099239439 ~1998
Exponent Prime Factor Digits Year
4049620013158703607911 ~2002
404973973242984383910 ~1999
4049827318099654639 ~1998
4049921518099843039 ~1998
405000397243000238310 ~1999
405002393243001435910 ~1999
4050056518100113039 ~1998
4050118918100237839 ~1998
4050228238100456479 ~1998
4050293638100587279 ~1998
4050597838101195679 ~1998
405072961243043776710 ~1999
4050789598101579199 ~1998
405089411729160939910 ~2001
4050999838101999679 ~1998
4051142998102285999 ~1998
4051336918102673839 ~1998
405135173243081103910 ~1999
405138953243083371910 ~1999
4051495798102991599 ~1998
405166037324132829710 ~2000
405205477243123286310 ~1999
405223439324178751310 ~2000
405247933243148759910 ~1999
405248693243149215910 ~1999
Exponent Prime Factor Digits Year
405250673243150403910 ~1999
4052723638105447279 ~1998
4052726638105453279 ~1998
4052897518105795039 ~1998
405296791405296791110 ~2000
405299803405299803110 ~2000
4053059638106119279 ~1998
4053155638106311279 ~1998
4053420718106841439 ~1998
4053515038107030079 ~1998
4053538918107077839 ~1998
4053622918107245839 ~1998
405375973891827140710 ~2001
405382577324306061710 ~2000
4053862798107725599 ~1998
405388757243233254310 ~1999
405397451324317960910 ~2000
4054030798108061599 ~1998
405404633243242779910 ~1999
405408737567572231910 ~2000
405409637243245782310 ~1999
4054140598108281199 ~1998
405417217243250330310 ~1999
4054202172189269171911 ~2002
4054328518108657039 ~1998
Exponent Prime Factor Digits Year
405455153243273091910 ~1999
4054738918109477839 ~1998
40550653353202457129712 ~2005
4055168518110337039 ~1998
4055230318110460639 ~1998
4055345998110691999 ~1998
4055362918110725839 ~1998
405539501243323700710 ~1999
4055432638110865279 ~1998
4055677318111354639 ~1998
4055960398111920799 ~1998
405597167324477733710 ~2000
4056089398112178799 ~1998
405627449324501959310 ~2000
4056380998112761999 ~1998
405648667973556800910 ~2001
4056501118113002239 ~1998
405653777324523021710 ~2000
4056548638113097279 ~1998
405664997567930995910 ~2000
4056909191379349124711 ~2001
4057146718114293439 ~1998
405717407324573925710 ~2000
4057283218358003412711 ~2003
4057355038114710079 ~1998
Home
4.768.925 digits
e-mail
25-05-04