Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
240502153144301291910 ~1998
2405039994810079999 ~1996
240509161144305496710 ~1998
2405167074040680677711 ~2001
24051994924388722828712 ~2003
2405349234810698479 ~1996
2405374434810748879 ~1996
240539219192431375310 ~1998
2405394834810789679 ~1996
2405421114810842239 ~1996
2405466131298951710311 ~2000
2405480514810961039 ~1996
2405483831010303208711 ~2000
240554453144332671910 ~1998
2405578194811156399 ~1996
2405608194811216399 ~1996
2405651034811302079 ~1996
240566213144339727910 ~1998
240568121192454496910 ~1998
2405703594811407199 ~1996
2405712772068912982311 ~2000
2405755194811510399 ~1996
240590297144354178310 ~1998
2405927394811854799 ~1996
240600301144360180710 ~1998
Exponent Prime Factor Digits Year
240612721144367632710 ~1998
2406138234812276479 ~1996
2406140531299315886311 ~2000
2406165114812330239 ~1996
2406321234812642479 ~1996
2406325194812650399 ~1996
240634951385015921710 ~1999
2406368994812737999 ~1996
240644251385030801710 ~1999
2406484914812969839 ~1996
2406506034813012079 ~1996
240650807192520645710 ~1998
2406557034813114079 ~1996
2406564834813129679 ~1996
2406597594813195199 ~1996
2406601314813202639 ~1996
240660643240660643110 ~1998
2406680634813361279 ~1996
240672319577613565710 ~1999
2406724314813448639 ~1996
2406758994813517999 ~1996
2406880434813760879 ~1996
2406911634813823279 ~1996
240694367192555493710 ~1998
2406988314813976639 ~1996
Exponent Prime Factor Digits Year
240702313144421387910 ~1998
2407062834814125679 ~1996
2407077114814154239 ~1996
2407172996980801671111 ~2002
240722597144433558310 ~1998
2407405671155554721711 ~2000
2407446834814893679 ~1996
2407501794815003599 ~1996
2407565634815131279 ~1996
2407625634815251279 ~1996
2407648314815296639 ~1996
2407667634815335279 ~1996
2407757634815515279 ~1996
2407761714815523439 ~1996
2407779834815559679 ~1996
2407793514815587039 ~1996
2407794114815588239 ~1996
240782159192625727310 ~1998
240785641385257025710 ~1999
2407886514815773039 ~1996
2408121714816243439 ~1996
2408182194816364399 ~1996
2408197314816394639 ~1996
2408228634816457279 ~1996
2408276514816553039 ~1996
Exponent Prime Factor Digits Year
2408364612841870239911 ~2001
240843413144506047910 ~1998
240851539240851539110 ~1998
240852233144511339910 ~1998
240853259192682607310 ~1998
2408548194817096399 ~1996
2408552034817104079 ~1996
2408611914817223839 ~1996
2408626314817252639 ~1996
240863173385381076910 ~1999
240878683963514732110 ~2000
2408803194817606399 ~1996
2408817594817635199 ~1996
2408885034817770079 ~1996
2408891514817783039 ~1996
2408919234817838479 ~1996
240894853144536911910 ~1998
2408984994817969999 ~1996
2409011634818023279 ~1996
2409020034818040079 ~1996
240902279192721823310 ~1998
2409162234818324479 ~1996
240917753144550651910 ~1998
240920191240920191110 ~1998
2409217314818434639 ~1996
Home
5.307.017 digits
e-mail
26-01-11