Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4057357798114715599 ~1998
4057415038114830079 ~1998
4057600798115201599 ~1998
4057692118115384239 ~1998
405769307730384752710 ~2001
4057970398115940799 ~1998
4058043598116087199 ~1998
4058058718116117439 ~1998
405809947405809947110 ~2000
405840619730513114310 ~2001
405841927405841927110 ~2000
4058560438117120879 ~1998
4058577238117154479 ~1998
405861941324689552910 ~2000
4058684398117368799 ~1998
4058687638117375279 ~1998
405889553243533731910 ~1999
4059027718118055439 ~1998
405908719405908719110 ~2000
4059251998118503999 ~1998
4059330238118660479 ~1998
4059465598118931199 ~1998
405975491324780392910 ~2000
406004981243602988710 ~1999
40602202711693434377712 ~2004
Exponent Prime Factor Digits Year
406022431730840375910 ~2001
4060336311055687440711 ~2001
4060404838120809679 ~1998
4060492438120984879 ~1998
406057231730903015910 ~2001
4060638118121276239 ~1998
4061027998122055999 ~1998
4061075998122151999 ~1998
4061491438122982879 ~1998
406150967324920773710 ~2000
4061517838123035679 ~1998
4061609398123218799 ~1998
406162717243697630310 ~1999
4061971318123942639 ~1998
4061982118123964239 ~1998
406209541243725724710 ~1999
406216373243729823910 ~1999
4062172918124345839 ~1998
4062192238124384479 ~1998
406227037243736222310 ~1999
4062288118124576239 ~1998
406249861243749916710 ~1999
4062732718125465439 ~1998
4062776038125552079 ~1998
4062807238125614479 ~1998
Exponent Prime Factor Digits Year
4062920398125840799 ~1998
406294201243776520710 ~1999
4063314598126629199 ~1998
4063489198126978399 ~1998
4063508398127016799 ~1998
406350953568891334310 ~2000
4063537438127074879 ~1998
4063686611625474644111 ~2001
4063846918127693839 ~1998
4063931398127862799 ~1998
4064005318128010639 ~1998
4064088118128176239 ~1998
4064128438128256879 ~1998
4064237398128474799 ~1998
4064279998128559999 ~1998
4064374318128748639 ~1998
406440149569016208710 ~2000
406446511731603719910 ~2001
406447469325157975310 ~2000
406456573243873943910 ~1999
4064620198129240399 ~1998
406462577243877546310 ~1999
4064716198129432399 ~1998
4065010798130021599 ~1998
406509073975621775310 ~2001
Exponent Prime Factor Digits Year
4065169318130338639 ~1998
4065234238130468479 ~1998
4065268198130536399 ~1998
406546433243927859910 ~1999
406571021243942612710 ~1999
406586611406586611110 ~2000
4065973438131946879 ~1998
4066062238132124479 ~1998
4066110118132220239 ~1998
406611377325289101710 ~2000
4066152718132305439 ~1998
4066300571870498262311 ~2002
406634659731942386310 ~2001
4066351611301232515311 ~2001
4066511038133022079 ~1998
4066857118133714239 ~1998
4066885318133770639 ~1998
4066901398133802799 ~1998
4066911118133822239 ~1998
4067189518134379039 ~1998
4067200918134401839 ~1998
406720141244032084710 ~1999
4067202118134404239 ~1998
406725961244035576710 ~1999
4067444518134889039 ~1998
Home
4.768.925 digits
e-mail
25-05-04