Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
292090217175254130310 ~1998
2920905171577288791911 ~2001
2921020435842040879 ~1997
2921076115842152239 ~1997
2921276395842552799 ~1997
2921355595842711199 ~1997
292144751233715800910 ~1999
2921449435842898879 ~1997
2921481835842963679 ~1997
292150093175290055910 ~1998
2921516635843033279 ~1997
2921552635843105279 ~1997
292159451525887011910 ~1999
292162699701190477710 ~2000
2921849995843699999 ~1997
2921926435843852879 ~1997
292196371467514193710 ~1999
2921987995843975999 ~1997
292204391935054051310 ~2000
2922088315844176639 ~1997
2922223795844447599 ~1997
2922291115844582239 ~1997
2922395394968072163111 ~2002
2922500995845001999 ~1997
292252501175351500710 ~1998
Exponent Prime Factor Digits Year
2922546595845093199 ~1997
2922619795845239599 ~1997
2922634315845268639 ~1997
292267021175360212710 ~1998
2922675715845351439 ~1997
2922844915845689839 ~1997
2922883195845766399 ~1997
2922958315845916639 ~1997
2923057195846114399 ~1997
2923103035846206079 ~1997
2923119835846239679 ~1997
292312639292312639110 ~1999
292314101175388460710 ~1998
2923153195846306399 ~1997
2923481515846963039 ~1997
2923498915846997839 ~1997
2923565635847131279 ~1997
292392011233913608910 ~1999
2923921435847842879 ~1997
2923921795847843599 ~1997
2924074435848148879 ~1997
2924197195848394399 ~1997
2924214835848429679 ~1997
2924431435848862879 ~1997
2924465515848931039 ~1997
Exponent Prime Factor Digits Year
292460507233968405710 ~1999
2924773795849547599 ~1997
2924823835849647679 ~1997
2924852995849705999 ~1997
2924979835849959679 ~1997
292516333175509799910 ~1998
292517341175510404710 ~1998
2925281395850562799 ~1997
2925401035850802079 ~1997
2925402715850805439 ~1997
2925611635851223279 ~1997
2925618835851237679 ~1997
2925777115851554239 ~1997
292595707702229696910 ~2000
292601321175560792710 ~1998
2926034035852068079 ~1997
292609001175565400710 ~1998
2926096315852192639 ~1997
292613729409659220710 ~1999
2926208035852416079 ~1997
2926370035852740079 ~1997
2926379112399630870311 ~2001
2926687915853375839 ~1997
2926725115853450239 ~1997
2926868515853737039 ~1997
Exponent Prime Factor Digits Year
292716577175629946310 ~1998
2927272195854544399 ~1997
292735277234188221710 ~1999
2927357395854714799 ~1997
2927546995855093999 ~1997
2927741515855483039 ~1997
2927762995855525999 ~1997
2927784595855569199 ~1997
2927806435855612879 ~1997
2927812435855624879 ~1997
2927850715855701439 ~1997
2928030115856060239 ~1997
292804597468487355310 ~1999
2928211435856422879 ~1997
292826953175696171910 ~1998
2928361195856722399 ~1997
2928379915856759839 ~1997
292845481175707288710 ~1998
2928480715856961439 ~1997
2928495235856990479 ~1997
2928577915857155839 ~1997
292864553175718731910 ~1998
2928739795857479599 ~1997
292890677175734406310 ~1998
2928908035857816079 ~1997
Home
4.724.182 digits
e-mail
25-04-13