Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2604183115208366239 ~1997
2604191995208383999 ~1997
260426909364597672710 ~1999
2604409915208819839 ~1997
2604456115208912239 ~1997
2604493795208987599 ~1997
260453153156271891910 ~1998
2604562195209124399 ~1997
2604564115209128239 ~1997
2604661195209322399 ~1997
2604696235209392479 ~1997
260475421156285252710 ~1998
260485807416777291310 ~1999
260490029364686040710 ~1999
260495987677289566310 ~1999
260506817156304090310 ~1998
2605204795210409599 ~1997
2605209835210419679 ~1997
2605308835210617679 ~1997
2605445515210891039 ~1997
2605489435210978879 ~1997
260579497156347698310 ~1998
260608141156364884710 ~1998
260617267469111080710 ~1999
2606204035212408079 ~1997
Exponent Prime Factor Digits Year
260621861208497488910 ~1998
2606260435212520879 ~1997
2606302315212604639 ~1997
2606304835212609679 ~1997
2606432035212864079 ~1997
2606514835213029679 ~1997
2606577595213155199 ~1997
260658113156394867910 ~1998
2606608435213216879 ~1997
2606715715213431439 ~1997
260676397156405838310 ~1998
2606772715213545439 ~1997
260677721156406632710 ~1998
2606906635213813279 ~1997
2606964835213929679 ~1997
2607006595214013199 ~1997
2607010795214021599 ~1997
260716927886437551910 ~2000
260717201156430320710 ~1998
2607181195214362399 ~1997
260719841156431904710 ~1998
2607233995214467999 ~1997
2607255115214510239 ~1997
2607263515214527039 ~1997
2607288595214577199 ~1997
Exponent Prime Factor Digits Year
2607294115214588239 ~1997
260737417156442450310 ~1998
2607387115214774239 ~1997
260744611469340299910 ~1999
2607544795215089599 ~1997
2607599035215198079 ~1997
260767027260767027110 ~1998
2607797515215595039 ~1997
2607828835215657679 ~1997
260783027208626421710 ~1998
260788139469418650310 ~1999
2607888835215777679 ~1997
2607889435215778879 ~1997
260789773156473863910 ~1998
260801677156481006310 ~1998
260810377156486226310 ~1998
2608109395216218799 ~1997
2608148035216296079 ~1997
2608152115216304239 ~1997
2608194115216388239 ~1997
2608250395216500799 ~1997
260826701156496020710 ~1998
2608350835216701679 ~1997
2608387791878039208911 ~2001
260846077156507646310 ~1998
Exponent Prime Factor Digits Year
2608563715217127439 ~1997
260860673156516403910 ~1998
2608631395217262799 ~1997
260873213156523927910 ~1998
2608766395217532799 ~1997
260879953417407924910 ~1999
2608841035217682079 ~1997
260897837156538702310 ~1998
260898613156539167910 ~1998
260899141156539484710 ~1998
2609011435218022879 ~1997
2609154235218308479 ~1997
2609178595218357199 ~1997
2609193115218386239 ~1997
2609324995218649999 ~1997
260936609208749287310 ~1998
2609379235218758479 ~1997
2609457595218915199 ~1997
260946157156567694310 ~1998
2609470795218941599 ~1997
260953937156572362310 ~1998
2609575915219151839 ~1997
260958707208766965710 ~1998
2609660035219320079 ~1997
2609696995219393999 ~1997
Home
4.724.182 digits
e-mail
25-04-13