Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2928928195857856399 ~1997
292899731234319784910 ~1999
2929103635858207279 ~1997
292910393175746235910 ~1998
2929452235858904479 ~1997
2929473115858946239 ~1997
292961579527330842310 ~1999
2929639915859279839 ~1997
2929656715859313439 ~1997
2929685515859371039 ~1997
2929898635859797279 ~1997
292993769234395015310 ~1999
292999013703197631310 ~2000
292999937175799962310 ~1998
29301693134458791085712 ~2004
2930169595860339199 ~1997
293043677175826206310 ~1998
293048927234439141710 ~1999
293049607527489292710 ~1999
293063711234450968910 ~1999
2930656315861312639 ~1997
2930796595861593199 ~1997
2930862595861725199 ~1997
2931010795862021599 ~1997
2931190195862380399 ~1997
Exponent Prime Factor Digits Year
293125097175875058310 ~1998
2931252235862504479 ~1997
293128267469005227310 ~1999
293133173938026153710 ~2000
2931510115863020239 ~1997
2931529915863059839 ~1997
2931610071407172833711 ~2000
2931669835863339679 ~1997
2931723715863447439 ~1997
2931724435863448879 ~1997
293174839527714710310 ~1999
2931808315863616639 ~1997
293181737175909042310 ~1998
2931888235863776479 ~1997
293196979293196979110 ~1999
2932145035864290079 ~1997
293218769234575015310 ~1999
2932189795864379599 ~1997
2932245835864491679 ~1997
2932304813225535291111 ~2001
2932362715864725439 ~1997
2932385515864771039 ~1997
2932550515865101039 ~1997
2932572715865145439 ~1997
2932669315865338639 ~1997
Exponent Prime Factor Digits Year
2932710595865421199 ~1997
2932759195865518399 ~1997
2932787035865574079 ~1997
2932852435865704879 ~1997
2932877515865755039 ~1997
2932900075455194130311 ~2002
2932939435865878879 ~1997
2933041315866082639 ~1997
2933084511231895494311 ~2000
2933097595866195199 ~1997
293314709234651767310 ~1999
293321333175992799910 ~1998
293323873175994323910 ~1998
2933301835866603679 ~1997
293330827469329323310 ~1999
2933324395866648799 ~1997
2933380915866761839 ~1997
293348389704036133710 ~2000
2933484595866969199 ~1997
2933748115867496239 ~1997
293374973176024983910 ~1998
293380459293380459110 ~1999
293384053469414484910 ~1999
2933883235867766479 ~1997
293396561176037936710 ~1998
Exponent Prime Factor Digits Year
2934092995868185999 ~1997
2934094915868189839 ~1997
293411791293411791110 ~1999
2934155395868310799 ~1997
2934261835868523679 ~1997
2934279235868558479 ~1997
2934342835868685679 ~1997
2934347635868695279 ~1997
2934403195868806399 ~1997
2934564835869129679 ~1997
293457389939063644910 ~2000
293465699234772559310 ~1999
2934671995869343999 ~1997
2934867835869735679 ~1997
2934918235869836479 ~1997
2934927115869854239 ~1997
293492833469588532910 ~1999
2934954835869909679 ~1997
293503481176102088710 ~1998
293504759234803807310 ~1999
2935126435870252879 ~1997
2935192571350188582311 ~2000
293536349234829079310 ~1999
2935392235870784479 ~1997
2935505395871010799 ~1997
Home
4.724.182 digits
e-mail
25-04-13