Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2587914715175829439 ~1997
2587992595175985199 ~1997
2588012395176024799 ~1997
2588139595176279199 ~1997
258818587465873456710 ~1999
2588209315176418639 ~1997
2588223835176447679 ~1997
258823787207059029710 ~1998
258823813155294287910 ~1998
2588316595176633199 ~1997
2588587091656695737711 ~2000
258863291207090632910 ~1998
258863401155318040710 ~1998
258866921207093536910 ~1998
2588685235177370479 ~1997
2588729635177459279 ~1997
258876613155325967910 ~1998
2588780515177561039 ~1997
258879979258879979110 ~1998
258891313155334787910 ~1998
258896567466013820710 ~1999
2589019435178038879 ~1997
2589187435178374879 ~1997
2589314515178629039 ~1997
258932537155359522310 ~1998
Exponent Prime Factor Digits Year
2589357115178714239 ~1997
2589367195178734399 ~1997
2589607315179214639 ~1997
2589620515179241039 ~1997
2589627715179255439 ~1997
2589650395179300799 ~1997
2589668635179337279 ~1997
258970757207176605710 ~1998
2589761035179522079 ~1997
258979093155387455910 ~1998
2589825235179650479 ~1997
258998713414397940910 ~1999
259005179828816572910 ~2000
259023211259023211110 ~1998
259027337207221869710 ~1998
2590300915180601839 ~1997
2590382035180764079 ~1997
259039321155423592710 ~1998
2590400635180801279 ~1997
2590496995180993999 ~1997
2590653115181306239 ~1997
2590696915181393839 ~1997
2590699315181398639 ~1997
2590724035181448079 ~1997
2590788715181577439 ~1997
Exponent Prime Factor Digits Year
2590824595181649199 ~1997
2590982995181965999 ~1997
259098509207278807310 ~1998
2590993435181986879 ~1997
2591025835182051679 ~1997
2591080795182161599 ~1997
2591164195182328399 ~1997
259121747207297397710 ~1998
2591308435182616879 ~1997
259130917155478550310 ~1998
2591315035182630079 ~1997
2591321995182643999 ~1997
2591424595182849199 ~1997
2591448835182897679 ~1997
2591591395183182799 ~1997
2591612395183224799 ~1997
2591637115183274239 ~1997
2591677315183354639 ~1997
2592088795184177599 ~1997
259209707207367765710 ~1998
2592112795184225599 ~1997
2592120595184241199 ~1997
2592368995184737999 ~1997
259237751207390200910 ~1998
2592405115184810239 ~1997
Exponent Prime Factor Digits Year
2592440035184880079 ~1997
2592468595184937199 ~1997
2592609835185219679 ~1997
2592632395185264799 ~1997
2592668635185337279 ~1997
2592756715185513439 ~1997
2592774235185548479 ~1997
2592813595185627199 ~1997
2592838315185676639 ~1997
259292387466726296710 ~1999
2592930595185861199 ~1997
259295833155577499910 ~1998
259298357622316056910 ~1999
2592991915185983839 ~1997
259300147259300147110 ~1998
259304627207443701710 ~1998
2593105435186210879 ~1997
2593114915186229839 ~1997
2593134235186268479 ~1997
2593209616794209178311 ~2002
2593241515186483039 ~1997
2593535515187071039 ~1997
2593637395187274799 ~1997
2593651915187303839 ~1997
259368917363116483910 ~1999
Home
4.724.182 digits
e-mail
25-04-13