Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
249683633349557086310 ~1999
249686537199749229710 ~1998
2496896634993793279 ~1997
249694337199755469710 ~1998
249695441149817264710 ~1998
2496988434993976879 ~1997
2496990714993981439 ~1997
249702157149821294310 ~1998
2497080594994161199 ~1997
2497189793595953297711 ~2001
2497215834994431679 ~1997
2497269594994539199 ~1997
2497305114994610239 ~1997
249730997149838598310 ~1998
249746477199797181710 ~1998
249746683249746683110 ~1998
2497700994995401999 ~1997
2497720314995440639 ~1997
2497741314995482639 ~1997
2497848234995696479 ~1997
2497910394995820799 ~1997
249792199249792199110 ~1998
249805013599532031310 ~1999
2498187114996374239 ~1997
249819149349746808710 ~1999
Exponent Prime Factor Digits Year
249821909199857527310 ~1998
249837607399740171310 ~1999
2498400234996800479 ~1997
249841541149904924710 ~1998
249848393349787750310 ~1999
2498485914996971839 ~1997
2498496834996993679 ~1997
2498515794997031599 ~1997
2498516034997032079 ~1997
2498523594997047199 ~1997
249856417149913850310 ~1998
2498629194997258399 ~1997
2498724114997448239 ~1997
249878459199902767310 ~1998
249885011199908008910 ~1998
2498882514997765039 ~1997
2499012594998025199 ~1997
2499079194998158399 ~1997
2499310794998621599 ~1997
2499506394999012799 ~1997
2499515994999031999 ~1997
249952453149971471910 ~1998
2499545994999091999 ~1997
249956803249956803110 ~1998
249957011199965608910 ~1998
Exponent Prime Factor Digits Year
2499613314999226639 ~1997
249962927199970341710 ~1998
2499682914999365839 ~1997
249970121199976096910 ~1998
2499720114999440239 ~1997
2499733434999466879 ~1997
2499875394999750799 ~1997
2499908034999816079 ~1997
2499917994999835999 ~1997
2500013995000027999 ~1997
2500069795000139599 ~1997
2500205395000410799 ~1997
2500246795000493599 ~1997
250028803250028803110 ~1998
2500299595000599199 ~1997
2500307995000615999 ~1997
2500339915000679839 ~1997
250061893150037135910 ~1998
2500646635001293279 ~1997
2500653235001306479 ~1997
2500680235001360479 ~1997
2500759795001519599 ~1997
250082117200065693710 ~1998
2500821371150377830311 ~2000
250084643600203143310 ~1999
Exponent Prime Factor Digits Year
250085057150051034310 ~1998
2500900195001800399 ~1997
2500902715001805439 ~1997
2501060334351844974311 ~2001
2501061235002122479 ~1997
2501192515002385039 ~1997
2501270995002541999 ~1997
250127653400204244910 ~1999
250129001150077400710 ~1998
250131887200105509710 ~1998
2501319674652454586311 ~2001
2501332691800959536911 ~2000
2501340115002680239 ~1997
250135049600324117710 ~1999
2501352835002705679 ~1997
2501376235002752479 ~1997
2501631835003263679 ~1997
2501644195003288399 ~1997
2501708035003416079 ~1997
2501722315003444639 ~1997
2501722915003445839 ~1997
250174217150104530310 ~1998
2501816995003633999 ~1997
2501820715003641439 ~1997
250192259200153807310 ~1998
Home
4.724.182 digits
e-mail
25-04-13