Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2579614435159228879 ~1997
2579739835159479679 ~1997
2579791915159583839 ~1997
257983513567563728710 ~1999
257988713361184198310 ~1999
2579940835159881679 ~1997
2580038995160077999 ~1997
2580071035160142079 ~1997
2580075115160150239 ~1997
258008797154805278310 ~1998
2580098871238447457711 ~2000
2580155035160310079 ~1997
2580200231032080092111 ~2000
2580216115160432239 ~1997
258021611206417288910
2580218395160436799 ~1997
258027113361237958310 ~1999
2580271315160542639 ~1997
258029173154817503910 ~1998
258042077154825246310 ~1998
258042413154825447910 ~1998
258042943258042943110 ~1998
2580441835160883679 ~1997
258058433361281806310 ~1999
2580597835161195679 ~1997
Exponent Prime Factor Digits Year
2580627235161254479 ~1997
2580647995161295999 ~1997
2580804115161608239 ~1997
258090643258090643110 ~1998
2580928195161856399 ~1997
258093299206474639310 ~1998
258100877154860526310 ~1998
2581015795162031599 ~1997
258110719464599294310 ~1999
2581120315162240639 ~1997
2581125595162251199 ~1997
258112817206490253710 ~1998
2581307395162614799 ~1997
258132481154879488710 ~1998
2581363795162727599 ~1997
2581384315162768639 ~1997
2581423435162846879 ~1997
2581427995162855999 ~1997
258148739206518991310 ~1998
2581506115163012239 ~1997
2581507315163014639 ~1997
2581604395163208799 ~1997
258162371206529896910 ~1998
2581646395163292799 ~1997
258164833154898899910 ~1998
Exponent Prime Factor Digits Year
258167369619601685710 ~1999
2581697995163395999 ~1997
2581730395163460799 ~1997
258185549619645317710 ~1999
2581860235163720479 ~1997
2581883035163766079 ~1997
258192629206554103310 ~1998
258192989206554391310 ~1998
2581963435163926879 ~1997
2581994395163988799 ~1997
258201367258201367110 ~1998
258211663258211663110 ~1998
258214279464785702310 ~1999
2582149195164298399 ~1997
2582273515164547039 ~1997
258233141154939884710 ~1998
2582369635164739279 ~1997
2582449195164898399 ~1997
2582486035164972079 ~1997
2582548195165096399 ~1997
258256723258256723110 ~1998
2582595115165190239 ~1997
2582603395165206799 ~1997
2582626195165252399 ~1997
258266207206612965710 ~1998
Exponent Prime Factor Digits Year
258270869619850085710 ~1999
258274001154964400710 ~1998
2582770915165541839 ~1997
2582850371033140148111 ~2000
258286333154971799910 ~1998
2582960395165920799 ~1997
258301709206641367310 ~1998
258306431671596720710 ~1999
2583180595166361199 ~1997
258330277154998166310 ~1998
2583385435166770879 ~1997
2583394435166788879 ~1997
2583398635166797279 ~1997
2583421315166842639 ~1997
2583477835166955679 ~1997
2583554635167109279 ~1997
258364153155018491910 ~1998
2583659035167318079 ~1997
2583684715167369439 ~1997
258370901206696720910 ~1998
2583720835167441679 ~1997
258375479620101149710 ~1999
258377221155026332710 ~1998
2583820795167641599 ~1997
2583861715167723439 ~1997
Home
4.768.925 digits
e-mail
25-05-04