Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
269065361161439216710 ~1998
2690656915381313839 ~1997
2690773315381546639 ~1997
269088059215270447310 ~1998
2690921395381842799 ~1997
2691035395382070799 ~1997
269104753592030456710 ~1999
269116973161470183910 ~1998
269124833376774766310 ~1999
269130833161478499910 ~1998
2691355435382710879 ~1997
2691365995382731999 ~1997
2691432115382864239 ~1997
269147477161488486310 ~1998
2691528115383056239 ~1997
269163577161498146310 ~1998
2691685915383371839 ~1997
2691687715383375439 ~1997
2691698635383397279 ~1997
269178779215343023310 ~1998
2691935035383870079 ~1997
2691964915383929839 ~1997
269205817161523490310 ~1998
269207683269207683110 ~1999
269216683646120039310 ~1999
Exponent Prime Factor Digits Year
269225401430760641710 ~1999
2692273795384547599 ~1997
269229101215383280910 ~1998
2692320595384641199 ~1997
2692347235384694479 ~1997
2692406635384813279 ~1997
2692420915384841839 ~1997
2692519195385038399 ~1997
2692546315385092639 ~1997
2692621315385242639 ~1997
269269061215415248910 ~1998
2692834915385669839 ~1997
2692880035385760079 ~1997
269289941215431952910 ~1998
2692909915385819839 ~1997
2692948915385897839 ~1997
2693084995386169999 ~1997
2693114995386229999 ~1997
269312287484762116710 ~1999
2693176195386352399 ~1997
2693267035386534079 ~1997
2693284915386569839 ~1997
2693412235386824479 ~1997
2693457115386914239 ~1997
269350157808050471110 ~2000
Exponent Prime Factor Digits Year
2693512795387025599 ~1997
2693523835387047679 ~1997
2693624515387249039 ~1997
2693694235387388479 ~1997
2693700715387401439 ~1997
2693797915387595839 ~1997
269382257161629354310 ~1998
269383193377136470310 ~1999
269383487215506789710 ~1998
269385617161631370310 ~1998
2693900035387800079 ~1997
2693997835387995679 ~1997
2694070915388141839 ~1997
2694143395388286799 ~1997
2694186835388373679 ~1997
2694196915388393839 ~1997
2694466315388932639 ~1997
269450449592790987910 ~1999
269452811215562248910 ~1998
2694580435389160879 ~1997
2694630115389260239 ~1997
2694802195389604399 ~1997
269490713161694427910 ~1998
269492957161695774310 ~1998
2695009435390018879 ~1997
Exponent Prime Factor Digits Year
269507083269507083110 ~1999
2695099915390199839 ~1997
269518259646843821710 ~1999
269530619215624495310 ~1998
269533421161720052710 ~1998
269538163269538163110 ~1999
269540317161724190310 ~1998
2695447915390895839 ~1997
2695450435390900879 ~1997
269546093161727655910 ~1998
2695467595390935199 ~1997
2695511515391023039 ~1997
2695558435391116879 ~1997
2695716235391432479 ~1997
2695835515391671039 ~1997
2695858915391717839 ~1997
2695869235391738479 ~1997
2695910395391820799 ~1997
2695953235391906479 ~1997
2696000035392000079 ~1997
269603143269603143110 ~1999
2696197435392394879 ~1997
2696345395392690799 ~1997
2696432995392865999 ~1997
2696509435393018879 ~1997
Home
4.724.182 digits
e-mail
25-04-13