Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
240920191240920191110 ~1998
2409217314818434639 ~1996
2409234114818468239 ~1996
240930457578233096910 ~1999
2409392394818784799 ~1996
2409575514819151039 ~1996
2409576114819152239 ~1996
2409668514819337039 ~1996
2409683034819366079 ~1996
2409724194819448399 ~1996
2409730914819461839 ~1996
240980473144588283910 ~1998
240982459240982459110 ~1998
240984451240984451110 ~1998
2409900594819801199 ~1996
2410157634820315279 ~1996
2410173834820347679 ~1996
2410198737278800164711 ~2002
2410290594820581199 ~1996
2410370394820740799 ~1996
2410381914820763839 ~1996
241043219192834575310 ~1998
2410456314820912639 ~1996
2410472634820945279 ~1996
2410605594821211199 ~1996
Exponent Prime Factor Digits Year
2410644234821288479 ~1996
2410668834821337679 ~1996
241074437144644662310 ~1998
241076021144645612710 ~1998
2410903314821806639 ~1996
2411176314822352639 ~1996
2411207514822415039 ~1996
2411254314822508639 ~1996
2411267994822535999 ~1996
241131809337584532710 ~1999
2411354394822708799 ~1996
241140197144684118310 ~1998
241145167434061300710 ~1999
241149067241149067110 ~1998
241149277144689566310 ~1998
2411498514822997039 ~1996
2411585034823170079 ~1996
241158691241158691110 ~1998
2411639994823279999 ~1996
2411641794823283599 ~1996
2411703114823406239 ~1996
2411703834823407679 ~1996
2411757834823515679 ~1996
241177091627060436710 ~1999
241178117144706870310 ~1998
Exponent Prime Factor Digits Year
2411850114823700239 ~1996
2411898491302425184711 ~2000
241191481144714888710 ~1998
2411954994823909999 ~1996
2412026034824052079 ~1996
241202827241202827110 ~1998
241208041144724824710 ~1998
2412092634824185279 ~1996
241218739241218739110 ~1998
2412190194824380399 ~1996
241232557385972091310 ~1999
2412387714824775439 ~1996
2412421914824843839 ~1996
2412499794824999599 ~1996
241252181144751308710 ~1998
241255121144753072710 ~1998
2412574914825149839 ~1996
2412617034825234079 ~1996
2412665634825331279 ~1996
241268701144761220710 ~1998
2412744714825489439 ~1996
2412774234825548479 ~1996
2412846234825692479 ~1996
241289317144773590310 ~1998
241289801193031840910 ~1998
Exponent Prime Factor Digits Year
241295491434331883910 ~1999
241317913144790747910 ~1998
241318481144791088710 ~1998
2413327434826654879 ~1996
241338157144802894310 ~1998
241342609530953739910 ~1999
2413464114826928239 ~1996
241351753144811051910 ~1998
241353677337895147910 ~1999
241353691241353691110 ~1998
241355573144813343910 ~1998
2413583994827167999 ~1996
241362283579269479310 ~1999
241362673144817603910 ~1998
2413723434827446879 ~1996
2413745994827491999 ~1996
2413857834827715679 ~1996
2413870314827740639 ~1996
241391921193113536910 ~1998
2414180634828361279 ~1996
241418897144851338310 ~1998
2414211714828423439 ~1996
2414231514828463039 ~1996
2414261514828523039 ~1996
2414327994828655999 ~1996
Home
4.724.182 digits
e-mail
25-04-13