Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2525797915051595839 ~1997
252581141202064912910 ~1998
2525830315051660639 ~1997
2525841595051683199 ~1997
2526042235052084479 ~1997
252604789555730535910 ~1999
252610903606266167310 ~1999
252614137151568482310 ~1998
252616817353663543910 ~1999
2526202435052404879 ~1997
252628679202102943310 ~1998
252635557404216891310 ~1999
252636091404217745710 ~1999
2526382195052764399 ~1997
252665117353731163910 ~1999
2526660835053321679 ~1997
252683987202147189710 ~1998
252691919202153535310 ~1998
252692263252692263110 ~1998
2526945235053890479 ~1997
2526977515053955039 ~1997
252701441151620864710 ~1998
2527019035054038079 ~1997
252706757151624054310 ~1998
252717041151630224710 ~1998
Exponent Prime Factor Digits Year
2527217395054434799 ~1997
2527351795054703599 ~1997
2527413115054826239 ~1997
252747073151648243910 ~1998
2527554115055108239 ~1997
2527612915055225839 ~1997
2527618195055236399 ~1997
2527673035055346079 ~1997
2527675195055350399 ~1997
252767777960517552710 ~2000
2527728235055456479 ~1997
252781561151668936710 ~1998
2527836835055673679 ~1997
2527853035055706079 ~1997
2527984315055968639 ~1997
252801377151680826310 ~1998
2528019115056038239 ~1997
2528050435056100879 ~1997
2528165414803514279111 ~2001
252817381151690428710 ~1998
2528281435056562879 ~1997
252828833151697299910 ~1998
2528297995056595999 ~1997
2528304715056609439 ~1997
2528360991061911615911 ~2000
Exponent Prime Factor Digits Year
2528452915056905839 ~1997
2528488315056976639 ~1997
2528577235057154479 ~1997
2528593195057186399 ~1997
252859553151715731910 ~1998
2528658595057317199 ~1997
2528665391062039463911 ~2000
252870313151722187910 ~1998
252872299252872299110 ~1998
2528738395057476799 ~1997
2528937835057875679 ~1997
2528971195057942399 ~1997
2529113395058226799 ~1997
2529130795058261599 ~1997
2529297115058594239 ~1997
252937943657638651910 ~1999
2529400435058800879 ~1997
2529441235058882479 ~1997
252945257607068616910 ~1999
2529578515059157039 ~1997
2529688435059376879 ~1997
2529698635059397279 ~1997
2529806391062518683911 ~2000
2529905395059810799 ~1997
2530101715060203439 ~1997
Exponent Prime Factor Digits Year
2530111315060222639 ~1997
2530112995060225999 ~1997
2530118515060237039 ~1997
253018013151810807910 ~1998
253025257151815154310 ~1998
2530277395060554799 ~1997
2530279195060558399 ~1997
2530334635920983034311 ~2002
253040147202432117710 ~1998
2530512835061025679 ~1997
253051657151830994310 ~1998
2530540795061081599 ~1997
253055497151833298310 ~1998
253055521556722146310 ~1999
2530568035061136079 ~1997
253060021151836012710 ~1998
2530601635061203279 ~1997
253061261202449008910 ~1998
2530646395061292799 ~1997
2530656715061313439 ~1997
2530707115061414239 ~1997
253070977151842586310 ~1998
2530773715061547439 ~1997
2530799515061599039 ~1997
2530851595061703199 ~1997
Home
4.768.925 digits
e-mail
25-05-04