Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1810704233621408479 ~1996
181072861108643716710 ~1997
1810773113621546239 ~1996
181077979869174299310 ~1999
1810787393621574799 ~1996
1810825793621651599 ~1996
1810838633621677279 ~1996
181086137144868909710 ~1997
181086443579476617710 ~1998
181087237108652342310 ~1997
181094477108656686310 ~1997
1810981433621962879 ~1996
1811005935179476959911 ~2001
181104491144883592910 ~1997
1811080793622161599 ~1996
1811087513622175039 ~1996
1811089433622178879 ~1996
1811155793622311599 ~1996
1811160593622321199 ~1996
181117877144894301710 ~1997
181118081108670848710 ~1997
1811215433622430879 ~1996
1811221913622443839 ~1996
181126987181126987110 ~1997
1811391113622782239 ~1996
Exponent Prime Factor Digits Year
1811424593622849199 ~1996
1811491193622982399 ~1996
181152073398534560710 ~1998
181152353108691411910 ~1997
1811539193623078399 ~1996
181157371760860958310 ~1999
181158077144926461710 ~1997
1811580833623161679 ~1996
1811581193623162399 ~1996
181161089253625524710 ~1998
1811678393623356799 ~1996
181169999144935999310 ~1997
181170809434809941710 ~1998
181188191144950552910 ~1997
1811883833623767679 ~1996
181200599326161078310 ~1998
1812015713624031439 ~1996
1812063593624127199 ~1996
181207111326172799910 ~1998
1812072233624144479 ~1996
1812168833624337679 ~1996
1812182393624364799 ~1996
1812261831449809464111 ~1999
1812264113624528239 ~1996
1812273833624547679 ~1996
Exponent Prime Factor Digits Year
181229677108737806310 ~1997
1812503513625007039 ~1996
181261231181261231110 ~1997
181265177145012141710 ~1997
181269073108761443910 ~1997
181272239906361195110 ~1999
1812733433625466879 ~1996
1812766433625532879 ~1996
1812784313625568639 ~1996
1812811433625622879 ~1996
181283077108769846310 ~1997
1812839513625679039 ~1996
1812856193625712399 ~1996
1812886433625772879 ~1996
181289861108773916710 ~1997
1812944993625889999 ~1996
1812955193625910399 ~1996
1813043393626086799 ~1996
1813055393626110799 ~1996
1813078913626157839 ~1996
1813083713626167439 ~1996
1813103033626206079 ~1996
1813122233626244479 ~1996
181313683435152839310 ~1998
1813148033626296079 ~1996
Exponent Prime Factor Digits Year
1813168793626337599 ~1996
1813187993626375999 ~1996
1813194593626389199 ~1996
1813214033626428079 ~1996
1813227833626455679 ~1996
181322881398910338310 ~1998
181324721108794832710 ~1997
1813259993626519999 ~1996
1813318793626637599 ~1996
1813348193626696399 ~1996
1813371713626743439 ~1996
1813478513626957039 ~1996
181350901544052703110 ~1998
181353713253895198310 ~1998
1813560113627120239 ~1996
1813594433627188879 ~1996
181359863471535643910 ~1998
1813610393627220799 ~1996
1813671833627343679 ~1996
1813682513627365039 ~1996
1813683713627367439 ~1996
1813686591450949272111 ~1999
181371301108822780710 ~1997
1813725113627450239 ~1996
181373273253922582310 ~1998
Home
5.247.179 digits
e-mail
25-12-14