Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
272693717163616230310 ~1998
2727052435454104879 ~1997
2727108715454217439 ~1997
272715181163629108710 ~1998
2727316391309111867311 ~2000
2727361795454723599 ~1997
2727374635454749279 ~1997
2727387835454775679 ~1997
272760547272760547110 ~1999
2727621835455243679 ~1997
2727654835455309679 ~1997
2727714595455429199 ~1997
272776337381886871910 ~1999
272777137163666282310 ~1998
272778007272778007110 ~1999
2727830395455660799 ~1997
2728028515456057039 ~1997
2728048795456097599 ~1997
2728105915456211839 ~1997
2728150795456301599 ~1997
2728219435456438879 ~1997
272822107272822107110 ~1999
2728456915456913839 ~1997
2728510315457020639 ~1997
2728595995457191999 ~1997
Exponent Prime Factor Digits Year
272872021163723212710 ~1998
272884211218307368910 ~1998
2728850515457701039 ~1997
2728870315457740639 ~1997
272908511218326808910 ~1998
2729118115458236239 ~1997
272912363709572143910 ~2000
2729262595458525199 ~1997
272929681163757808710 ~1998
272945093818835279110 ~2000
2729458315458916639 ~1997
2729470915458941839 ~1997
272954257163772554310 ~1998
2729559715459119439 ~1997
2729594995459189999 ~1997
272960453163776271910 ~1998
2729624515459249039 ~1997
2729639035459278079 ~1997
272971117163782670310 ~1998
2729873995459747999 ~1997
2729943115459886239 ~1997
2730168835460337679 ~1997
273032803273032803110 ~1999
2730365035460730079 ~1997
273040007218432005710 ~1998
Exponent Prime Factor Digits Year
2730467995460935999 ~1997
273048361163829016710 ~1998
2730558835461117679 ~1997
2730595435461190879 ~1997
2730617411256084008711 ~2000
273068179273068179110 ~1999
2730750835461501679 ~1997
2730877915461755839 ~1997
2730880315461760639 ~1997
273091097163854658310 ~1998
273091363273091363110 ~1999
2730922195461844399 ~1997
2730954115461908239 ~1997
273096401218477120910 ~1998
2730965395461930799 ~1997
2731007395462014799 ~1997
2731068595462137199 ~1997
273125197163875118310 ~1998
2731259395462518799 ~1997
2731403831147189608711 ~2000
2731487515462975039 ~1997
2731577995463155999 ~1997
2731594795463189599 ~1997
2731606315463212639 ~1997
273161587437058539310 ~1999
Exponent Prime Factor Digits Year
2731665835463331679 ~1997
2731755835463511679 ~1997
2731793635463587279 ~1997
2731820995463641999 ~1997
2731871515463743039 ~1997
2731871995463743999 ~1997
273191657163914994310 ~1998
2731932235463864479 ~1997
2731933315463866639 ~1997
2731993315463986639 ~1997
2732029915464059839 ~1997
273210461163926276710 ~1998
2732121235464242479 ~1997
2732168995464337999 ~1997
2732277115464554239 ~1997
273241313163944787910 ~1998
273242303655781527310 ~2000
2732476795464953599 ~1997
273256019218604815310 ~1998
2732652115465304239 ~1997
2732657035465314079 ~1997
2732729035465458079 ~1997
2732799595465599199 ~1997
2733014035466028079 ~1997
2733032635466065279 ~1997
Home
4.768.925 digits
e-mail
25-05-04