Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2180060514360121039 ~1996
2180080794360161599 ~1996
218020807218020807110 ~1998
2180228034360456079 ~1996
2180307234360614479 ~1996
2180411994360823999 ~1996
218043457348869531310 ~1998
218048801130829280710 ~1997
2180557914361115839 ~1996
218056243218056243110 ~1998
2180598714361197439 ~1996
218070371174456296910 ~1998
218072341130843404710 ~1997
2180727594361455199 ~1996
218078401130847040710 ~1997
2180794194361588399 ~1996
2180825634361651279 ~1996
218083757130850254310 ~1997
2180917194361834399 ~1996
2180942514361885039 ~1996
218094619218094619110 ~1998
2181004794362009599 ~1996
2181042234362084479 ~1996
2181061314362122639 ~1996
218111807174489445710 ~1998
Exponent Prime Factor Digits Year
2181151434362302879 ~1996
218115361130869216710 ~1997
218137501349020001710 ~1998
218140369523536885710 ~1999
2181408234362816479 ~1996
218142217130885330310 ~1997
218145373523548895310 ~1999
2181489791265264078311 ~2000
2181508194363016399 ~1996
2181607314363214639 ~1996
218162801174530240910 ~1998
2181671994363343999 ~1996
2181712794363425599 ~1996
218173337174538669710 ~1998
218174717174539773710 ~1998
218178361130907016710 ~1997
218184347174547477710 ~1998
2181905514363811039 ~1996
2181983034363966079 ~1996
2182074714364149439 ~1996
2182100994364201999 ~1996
2182137834364275679 ~1996
2182152234364304479 ~1996
2182269234364538479 ~1996
218231719741987844710 ~1999
Exponent Prime Factor Digits Year
2182324314364648639 ~1996
218232877130939726310 ~1997
2182445034364890079 ~1996
218245493130947295910 ~1997
2182504194365008399 ~1996
2182521234365042479 ~1996
2182595514365191039 ~1996
2182619514365239039 ~1996
2182621794365243599 ~1996
218264231174611384910 ~1998
218273621130964172710 ~1997
218284249480225347910 ~1999
2182863114365726239 ~1996
218290507218290507110 ~1998
2182978794365957599 ~1996
218298317305617643910 ~1998
2182996194365992399 ~1996
2183009634366019279 ~1996
218308037130984822310 ~1997
2183099634366199279 ~1996
2183127714366255439 ~1996
218317951218317951110 ~1998
2183230194366460399 ~1996
218331917130999150310 ~1997
218334943218334943110 ~1998
Exponent Prime Factor Digits Year
2183362434366724879 ~1996
2183397834366795679 ~1996
2183403834366807679 ~1996
218341817305678543910 ~1998
218346407393023532710 ~1998
2183487234366974479 ~1996
2183501034367002079 ~1996
2183542434367084879 ~1996
2183591034367182079 ~1996
2183599194367198399 ~1996
218363177174690541710 ~1998
2183632794367265599 ~1996
218364697131018818310 ~1997
2183747634367495279 ~1996
2183755194367510399 ~1996
2183772594367545199 ~1996
2183784834367569679 ~1996
218385407174708325710 ~1998
218386061174708848910 ~1998
218389811174711848910 ~1998
218391071174712856910 ~1998
218391821131035092710 ~1997
2183922834367845679 ~1996
2184018114368036239 ~1996
2184023634368047279 ~1996
Home
4.724.182 digits
e-mail
25-04-13