Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1964758193929516399 ~1996
1964864033929728079 ~1996
1964875913929751839 ~1996
196490293117894175910 ~1997
1964946713929893439 ~1996
1965048233930096479 ~1996
1965160913930321839 ~1996
1965184313930368639 ~1996
1965205313930410639 ~1996
1965250793930501599 ~1996
1965333833930667679 ~1996
1965350633930701279 ~1996
1965351593930703199 ~1996
196537043471688903310 ~1998
196538873117923323910 ~1997
196540987314465579310 ~1998
1965463793930927599 ~1996
1965542033931084079 ~1996
1965585171100727695311 ~1999
1965707393931414799 ~1996
196578653117947191910 ~1997
1965793433931586879 ~1996
196583623314533796910 ~1998
1965841913931683839 ~1996
1965905033931810079 ~1996
Exponent Prime Factor Digits Year
196590973117954583910 ~1997
1965910793931821599 ~1996
196592311196592311110 ~1997
1965947633931895279 ~1996
196595593117957355910 ~1997
1966117313932234639 ~1996
1966172033932344079 ~1996
196621153471890767310 ~1998
1966289633932579279 ~1996
1966361033932722079 ~1996
1966387913932775839 ~1996
1966407713932815439 ~1996
196641037471938488910 ~1998
1966418033932836079 ~1996
196642003196642003110 ~1997
1966427633932855279 ~1996
1966517513933035039 ~1996
1966540913933081839 ~1996
1966564193933128399 ~1996
196659041117995424710 ~1997
196667041118000224710 ~1997
196670099472008237710 ~1998
1966784033933568079 ~1996
1966798913933597839 ~1996
1966824113933648239 ~1996
Exponent Prime Factor Digits Year
1966879793933759599 ~1996
1966881833933763679 ~1996
1966891913933783839 ~1996
196705193118023115910 ~1997
1967131313934262639 ~1996
1967156393934312799 ~1996
1967229233934458479 ~1996
196723097157378477710 ~1997
196731373118038823910 ~1997
196734737275428631910 ~1998
1967404433934808879 ~1996
1967457233934914479 ~1996
1967463833934927679 ~1996
1967481593934963199 ~1996
1967493233934986479 ~1996
196749961118049976710 ~1997
1967517593935035199 ~1996
1967527193935054399 ~1996
1967556233935112479 ~1996
196758773275462282310 ~1998
1967608913935217839 ~1996
1967619233935238479 ~1996
196763201118057920710 ~1997
196767671157414136910 ~1997
1967703833935407679 ~1996
Exponent Prime Factor Digits Year
1967723633935447279 ~1996
1967746913935493839 ~1996
196782281157425824910 ~1997
1967860433935720879 ~1996
196787203196787203110 ~1997
1967874833935749679 ~1996
196787821118072692710 ~1997
1967904113935808239 ~1996
1967940113935880239 ~1996
1967958113935916239 ~1996
196798801118079280710 ~1997
1967991113935982239 ~1996
1968016913936033839 ~1996
1968167033936334079 ~1996
196843511157474808910 ~1997
1968445193936890399 ~1996
1968472193936944399 ~1996
1968478313936956639 ~1996
196849903196849903110 ~1997
196851881118111128710 ~1997
196872527157498021710 ~1997
1968889433937778879 ~1996
196890961433160114310 ~1998
1968934793937869599 ~1996
196895333118137199910 ~1997
Home
4.768.925 digits
e-mail
25-05-04