Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1774912433549824879 ~1995
1774942793549885599 ~1995
177496351177496351110 ~1997
1774974233549948479 ~1995
1774977593549955199 ~1995
1774996313549992639 ~1995
1775013713550027439 ~1995
1775037911455531086311 ~1999
1775038313550076639 ~1995
1775079233550158479 ~1995
177516301106509780710 ~1997
177519533106511719910 ~1997
177523279177523279110 ~1997
1775256713550513439 ~1995
1775277713550555439 ~1995
1775301593550603199 ~1995
1775383313550766639 ~1995
177543181106525908710 ~1997
1775463713550927439 ~1995
1775493713550987439 ~1995
177550301532650903110 ~1998
1775531633551063279 ~1995
1775581313551162639 ~1995
177564529390641963910 ~1998
1775732993551465999 ~1995
Exponent Prime Factor Digits Year
177574457106544674310 ~1997
1775775113551550239 ~1995
1775855033551710079 ~1995
177590563177590563110 ~1997
177593279142074623310 ~1997
1775972633551945279 ~1995
1776004313552008639 ~1995
1776025313552050639 ~1995
1776025433552050879 ~1995
1776072592024722752711 ~2000
177610331142088264910 ~1997
1776103793552207599 ~1995
1776118913552237839 ~1995
177612971142090376910 ~1997
177616927177616927110 ~1997
177624001106574400710 ~1997
1776255593552511199 ~1995
1776275033552550079 ~1995
1776298911421039128111 ~1999
177632137106579282310 ~1997
1776339713552679439 ~1995
1776447233552894479 ~1995
1776451193552902399 ~1995
1776454313552908639 ~1995
177652457106591474310 ~1997
Exponent Prime Factor Digits Year
1776618113553236239 ~1995
1776619433553238879 ~1995
177673361106604016710 ~1997
1776769913553539839 ~1995
1776782393553564799 ~1995
1776828593553657199 ~1995
1776829193553658399 ~1995
1776841793553683599 ~1995
1776857992878509943911 ~2000
177691403568612489710 ~1998
1776917993553835999 ~1995
1777012913554025839 ~1995
177702121106621272710 ~1997
177703151142162520910 ~1997
177704339568653884910 ~1998
1777138913554277839 ~1995
1777145033554290079 ~1995
177720253106632151910 ~1997
177720553106632331910 ~1997
177721837106633102310 ~1997
1777224233554448479 ~1995
1777257113554514239 ~1995
177728437106637062310 ~1997
1777311593554623199 ~1995
177731291142185032910 ~1997
Exponent Prime Factor Digits Year
1777313633554627279 ~1995
1777347833554695679 ~1995
177735377248829527910 ~1997
177740369248836516710 ~1997
177743437106646062310 ~1997
177746531568788899310 ~1998
177748861106649316710 ~1997
1777623113555246239 ~1995
177762691177762691110 ~1997
1777637393555274799 ~1995
1777664993555329999 ~1995
1777690793555381599 ~1995
1777749113555498239 ~1995
177776561106665936710 ~1997
1777788233555576479 ~1995
177783293106669975910 ~1997
1777838033555676079 ~1995
177784613106670767910 ~1997
1777931633555863279 ~1995
177802769142242215310 ~1997
1778053193556106399 ~1995
1778175713556351439 ~1995
1778196833556393679 ~1995
1778197313556394639 ~1995
1778216033556432079 ~1995
Home
4.888.230 digits
e-mail
25-06-29