Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
193309019618588860910 ~1999
1933097991430492512711 ~2000
1933120734755476995911 ~2001
1933126433866252879 ~1996
1933140833866281679 ~1996
193315459193315459110 ~1997
1933224713866449439 ~1996
1933225793866451599 ~1996
1933290113866580239 ~1996
193333171193333171110 ~1997
1933338233866676479 ~1996
193337437116002462310 ~1997
1933388633866777279 ~1996
1933425593866851199 ~1996
1933439633866879279 ~1996
193347251928066804910 ~1999
1933493633866987279 ~1996
1933530713867061439 ~1996
193356227154684981710 ~1997
1933612793867225599 ~1996
1933670393867340799 ~1996
193373563464096551310 ~1998
1933850633867701279 ~1996
1933926233867852479 ~1996
193394197116036518310 ~1997
Exponent Prime Factor Digits Year
1933977833867955679 ~1996
1933994711585875662311 ~2000
193407509580222527110 ~1999
193409197309454715310 ~1998
193411693116047015910 ~1997
193415111154732088910 ~1997
1934219513868439039 ~1996
1934234033868468079 ~1996
193423697116054218310 ~1997
193426903193426903110 ~1997
1934297513868595039 ~1996
1934306513868613039 ~1996
193437709464250501710 ~1998
1934386913868773839 ~1996
1934420033868840079 ~1996
1934507393869014799 ~1996
1934597513869195039 ~1996
1934634233869268479 ~1996
1934651993869303999 ~1996
1934854433869708879 ~1996
193486697464368072910 ~1998
1934887313869774639 ~1996
193491107154792885710 ~1997
1934923913869847839 ~1996
1934955593869911199 ~1996
Exponent Prime Factor Digits Year
1934998793869997599 ~1996
193505383193505383110 ~1997
193507469154805975310 ~1997
1935081233870162479 ~1996
1935125513870251039 ~1996
193516567193516567110 ~1997
1935217913870435839 ~1996
193523611348342499910 ~1998
1935255233870510479 ~1996
19352803319623742546312 ~2002
1935281033870562079 ~1996
193528481116117088710 ~1997
1935374513870749039 ~1996
1935380633870761279 ~1996
193546589154837271310 ~1997
1935486713870973439 ~1996
1935551633871103279 ~1996
1935552833871105679 ~1996
1935592313871184639 ~1996
1935709913871419839 ~1996
1935716633871433279 ~1996
1935723833871447679 ~1996
193573687193573687110 ~1997
193573999193573999110 ~1997
1935764513871529039 ~1996
Exponent Prime Factor Digits Year
1935874313871748639 ~1996
193589843619487497710 ~1999
1935948113871896239 ~1996
1936029231277779291911 ~1999
1936030313872060639 ~1996
1936037033872074079 ~1996
193604161116162496710 ~1997
193606513116163907910 ~1997
1936086593872173199 ~1996
1936102433872204879 ~1996
193612061116167236710 ~1997
193612141116167284710 ~1997
1936121513872243039 ~1996
193615999193615999110 ~1997
193617317116170390310 ~1997
1936175513872351039 ~1996
1936177193872354399 ~1996
193621577116172946310 ~1997
1936229633872459279 ~1996
193623103309796964910 ~1998
193631369271083916710 ~1998
193631371348536467910 ~1998
1936368233872736479 ~1996
1936425113872850239 ~1996
1936468193872936399 ~1996
Home
4.768.925 digits
e-mail
25-05-04