Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1929378833858757679 ~1996
192940487154352389710 ~1997
1929471713858943439 ~1996
1929498113858996239 ~1996
192951149270131608710 ~1998
1929538793859077599 ~1996
192955391501684016710 ~1998
192955877115773526310 ~1997
1929602033859204079 ~1996
1929606233859212479 ~1996
1929609233859218479 ~1996
1929609593859219199 ~1996
192963817115778290310 ~1997
1929751193859502399 ~1996
1929793313859586639 ~1996
1929802793859605599 ~1996
192980657115788394310 ~1997
1929843833859687679 ~1996
192985951192985951110 ~1997
1929937913859875839 ~1996
1929997433859994879 ~1996
1930004033860008079 ~1996
1930015313860030639 ~1996
1930044113860088239 ~1996
193005047463212112910 ~1998
Exponent Prime Factor Digits Year
193011961115807176710 ~1997
1930144913860289839 ~1996
1930219433860438879 ~1996
1930307513860615039 ~1996
1930395593860791199 ~1996
1930395713860791439 ~1996
1930419833860839679 ~1996
1930427993860855999 ~1996
193045997115827598310 ~1997
1930474433860948879 ~1996
1930706513861413039 ~1996
1930756433861512879 ~1996
1930895033861790079 ~1996
1930927193861854399 ~1996
193109999154487999310 ~1997
1931105033862210079 ~1996
1931120393862240799 ~1996
1931154593862309199 ~1996
1931201393862402799 ~1996
193122077154497661710 ~1997
193122287154497829710 ~1997
1931229713862459439 ~1996
1931277311120140839911 ~1999
1931286713862573439 ~1996
193131613115878967910 ~1997
Exponent Prime Factor Digits Year
1931341313862682639 ~1996
1931349233862698479 ~1996
193140721115884432710 ~1997
193143679193143679110 ~1997
1931445713862891439 ~1996
193170221115902132710 ~1997
1931741872781708292911 ~2000
1931763113863526239 ~1996
193178467772713868110 ~1999
1931811713863623439 ~1996
1931827193863654399 ~1996
1931888393863776799 ~1996
1931904113863808239 ~1996
193192973579578919110 ~1999
193200047154560037710 ~1997
193202441115921464710 ~1997
1932039113864078239 ~1996
1932042233864084479 ~1996
1932085313864170639 ~1996
193209839347777710310 ~1998
1932218513864437039 ~1996
193222193115933315910 ~1997
193227869270519016710 ~1998
193233961115940376710 ~1997
193242121579726363110 ~1999
Exponent Prime Factor Digits Year
193246721154597376910 ~1997
193247773115948663910 ~1997
193249739154599791310 ~1997
193251319657054484710 ~1999
1932520433865040879 ~1996
1932523433865046879 ~1996
1932536393865072799 ~1996
193253789154603031310 ~1997
1932550913865101839 ~1996
1932554513865109039 ~1996
1932584633865169279 ~1996
1932620393865240799 ~1996
1932633731352843611111 ~1999
193264901115958940710 ~1997
1932748313865496639 ~1996
193277081115966248710 ~1997
1932774593865549199 ~1996
193282829154626263310 ~1997
1932877193865754399 ~1996
1932917817577037815311 ~2001
1932982913865965839 ~1996
1932986633865973279 ~1996
1933008233866016479 ~1996
193300871154640696910 ~1997
193305737154644589710 ~1997
Home
4.768.925 digits
e-mail
25-05-04