Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
225074459180059567310 ~1998
2250825234501650479 ~1996
2250868194501736399 ~1996
2250871434501742879 ~1996
2250898314501796639 ~1996
225090479180072383310 ~1998
2250908394501816799 ~1996
2251013394502026799 ~1996
225112567225112567110 ~1998
2251143594502287199 ~1996
225115057135069034310 ~1997
225121441135072864710 ~1997
225123413720394921710 ~1999
2251237194502474399 ~1996
225124853135074911910 ~1997
2251282194502564399 ~1996
2251298514502597039 ~1996
2251302714502605439 ~1996
225133663225133663110 ~1998
225134597135080758310 ~1997
2251407594502815199 ~1996
225159497135095698310 ~1997
225167009675501027110 ~1999
2251698234503396479 ~1996
2251802394503604799 ~1996
Exponent Prime Factor Digits Year
2251818714503637439 ~1996
2251829394503658799 ~1996
2251835034503670079 ~1996
2251885314503770639 ~1996
2251968594503937199 ~1996
2252000994504001999 ~1996
2252014914504029839 ~1996
2252094834504189679 ~1996
2252114634504229279 ~1996
2252115234504230479 ~1996
225214219540514125710 ~1999
2252226114504452239 ~1996
225235631180188504910 ~1998
2252529714505059439 ~1996
225263999405475198310 ~1999
2252650638875443482311 ~2002
2252665794505331599 ~1996
2252735394505470799 ~1996
225274271180219416910 ~1998
225276551180221240910 ~1998
2252869914505739839 ~1996
225294481135176688710 ~1997
2252972394505944799 ~1996
225298487180238789710 ~1998
225298867225298867110 ~1998
Exponent Prime Factor Digits Year
225304889180243911310 ~1998
225305441180244352910 ~1998
2253092514506185039 ~1996
225314339180251471310 ~1998
225316739405570130310 ~1999
225320897135192538310 ~1997
2253245634506491279 ~1996
225333377135200026310 ~1997
2253336114506672239 ~1996
2253357114506714239 ~1996
2253370434506740879 ~1996
225343291225343291110 ~1998
2253456234506912479 ~1996
2253494514506989039 ~1996
2253530994507061999 ~1996
2253569034507138079 ~1996
225358073135214843910 ~1997
2253770514507541039 ~1996
2253813234507626479 ~1996
2253818394507636799 ~1996
2253848994507697999 ~1996
225384953135230971910 ~1997
2253884514507769039 ~1996
225388837135233302310 ~1997
225398531586036180710 ~1999
Exponent Prime Factor Digits Year
2254005834508011679 ~1996
2254041714508083439 ~1996
2254096434508192879 ~1996
2254097034508194079 ~1996
2254135794508271599 ~1996
2254250994508501999 ~1996
2254269834508539679 ~1996
225428941135257364710 ~1997
2254320714508641439 ~1996
2254349034508698079 ~1996
2254362234508724479 ~1996
2254362834508725679 ~1996
2254372914508745839 ~1996
2254379034508758079 ~1996
2254429914508859839 ~1996
2254432794508865599 ~1996
225448681135269208710 ~1997
225449977135269986310 ~1997
225453923946906476710 ~1999
225454049180363239310 ~1998
225457061135274236710 ~1997
2254623834509247679 ~1996
2254650411082232196911 ~2000
2254669914509339839 ~1996
2254677714509355439 ~1996
Home
4.724.182 digits
e-mail
25-04-13