Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
172871753242020454310 ~1997
1728780593457561199 ~1995
1728853433457706879 ~1995
172885343449501891910
1728876233457752479 ~1995
1728903833457807679 ~1995
1728907332178423235911 ~2000
1728957593457915199 ~1995
1728970313457940639 ~1995
172899733414959359310 ~1998
172903061138322448910 ~1997
172903153103741891910 ~1996
1729044713458089439 ~1995
1729047833458095679 ~1995
1729060433458120879 ~1995
1729091993458183999 ~1995
1729092833458185679 ~1995
1729145033458290079 ~1995
1729173593458347199 ~1995
1729176833458353679 ~1995
172918973103751383910 ~1996
172923697103754218310 ~1996
1729245233458490479 ~1995
1729251833458503679 ~1995
1729282793458565599 ~1995
Exponent Prime Factor Digits Year
172932233103759339910 ~1996
172936573103761943910 ~1996
1729389113458778239 ~1995
1729409033458818079 ~1995
172945379415068909710 ~1998
1729480913458961839 ~1995
1729517033459034079 ~1995
1729556633459113279 ~1995
172955873103773523910 ~1996
172955921103773552710 ~1996
172959929138367943310 ~1997
172962431726442210310 ~1999
1729632113459264239 ~1995
172964633103778779910 ~1996
1729710833459421679 ~1995
172971779138377423310 ~1997
1729735433459470879 ~1995
172979291138383432910 ~1997
1729811993459623999 ~1995
172984373103790623910 ~1996
172985311276776497710 ~1998
1729866833459733679 ~1995
172999577103799746310 ~1996
1730115233460230479 ~1995
1730137193460274399 ~1995
Exponent Prime Factor Digits Year
1730142233460284479 ~1995
1730148713460297439 ~1995
1730166593460333199 ~1995
173017259138413807310 ~1997
1730339633460679279 ~1995
173041993276867188910 ~1998
173048879138439103310 ~1997
1730530313461060639 ~1995
173054773103832863910 ~1996
1730548793461097599 ~1995
1730551193461102399 ~1995
1730579393461158799 ~1995
173058673103835203910 ~1996
1730603393461206799 ~1995
173062313103837387910 ~1996
17306633919418043235912 ~2002
1730690513461381039 ~1995
173070701103842420710 ~1996
1730723633461447279 ~1995
173072407588446183910 ~1998
1730734193461468399 ~1995
1730741513461483039 ~1995
173075101380765222310 ~1998
1730832713461665439 ~1995
173084371173084371110 ~1997
Exponent Prime Factor Digits Year
1730958833461917679 ~1995
173098117103858870310 ~1996
1731057593462115199 ~1995
173106187276969899310 ~1998
1731074633462149279 ~1995
1731112313462224639 ~1995
173113531173113531110 ~1997
1731194513462389039 ~1995
1731201593462403199 ~1995
1731293993462587999 ~1995
1731294713462589439 ~1995
173130967311635740710 ~1998
173131531311636755910 ~1998
1731377993462755999 ~1995
173138417138510733710 ~1997
1731419393462838799 ~1995
173145941103887564710 ~1997
1731467633462935279 ~1995
1731483593462967199 ~1995
173150261138520208910 ~1997
173150801138520640910 ~1997
1731514793463029599 ~1995
1731518993463037999 ~1995
1731543233463086479 ~1995
173158031138526424910 ~1997
Home
4.888.230 digits
e-mail
25-06-29