Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
179129081107477448710 ~1997
1791308513582617039 ~1995
1791417233582834479 ~1995
1791449513582899039 ~1995
179162021143329616910 ~1997
1791667193583334399 ~1995
1791760433583520879 ~1995
179176817143341453710 ~1997
179178361107507016710 ~1997
179184353107510611910 ~1997
179185277107511166310 ~1997
1791926033583852079 ~1995
1791981113583962239 ~1995
179203471179203471110 ~1997
17920677124945582523312 ~2002
1792082993584165999 ~1995
179208793537626379110 ~1998
1792088393584176799 ~1995
1792179713584359439 ~1995
1792213313584426639 ~1995
1792226513584453039 ~1995
179223439179223439110 ~1997
179231177107538706310 ~1997
1792339913584679839 ~1995
1792343393584686799 ~1995
Exponent Prime Factor Digits Year
1792346513584693039 ~1995
1792415393584830799 ~1995
1792428593584857199 ~1995
1792455713584911439 ~1995
179246273250944782310 ~1998
179257777107554666310 ~1997
1792600433585200879 ~1995
1792706033585412079 ~1995
179271979609524728710 ~1998
179273767179273767110 ~1997
179275357107565214310 ~1997
1792776713585553439 ~1995
1792800713585601439 ~1995
179285473394428040710 ~1998
1792873193585746399 ~1995
179297567143438053710 ~1997
1793050193586100399 ~1995
179305957107583574310 ~1997
1793071793586143599 ~1995
1793219633586439279 ~1995
179338121107602872710 ~1997
179338781107603268710 ~1997
1793388113586776239 ~1995
1793430113586860239 ~1995
179343433107606059910 ~1997
Exponent Prime Factor Digits Year
1793494913586989839 ~1995
1793566313587132639 ~1995
1793685713587371439 ~1995
1793696393587392799 ~1995
179372261107623356710 ~1997
1793878913587757839 ~1995
1793891393587782799 ~1995
179393477107636086310 ~1997
1793950193587900399 ~1995
1794025433588050879 ~1995
1794056513588113039 ~1995
179407847430578832910 ~1998
179408171143526536910 ~1997
179416201107649720710 ~1997
1794201833588403679 ~1995
179422381107653428710 ~1997
1794327233588654479 ~1995
1794428633588857279 ~1995
1794432233588864479 ~1995
179447141107668284710 ~1997
179450581107670348710 ~1997
1794557513589115039 ~1995
179457079323022742310 ~1998
1794579233589158479 ~1995
1794595433589190879 ~1995
Exponent Prime Factor Digits Year
1794626393589252799 ~1995
179468273251255582310 ~1998
1794708713589417439 ~1995
1794782033589564079 ~1995
1794792713589585439 ~1995
1794846713589693439 ~1995
179487761107692656710 ~1997
1794881033589762079 ~1995
1794918833589837679 ~1995
1795031393590062799 ~1995
1795115393590230799 ~1995
1795210193590420399 ~1995
1795219313590438639 ~1995
1795283393590566799 ~1995
1795296593590593199 ~1995
1795329593590659199 ~1995
1795342793590685599 ~1995
1795348913590697839 ~1995
1795352033590704079 ~1995
1795394633590789279 ~1995
1795401833590803679 ~1995
1795417313590834639 ~1995
1795454513590909039 ~1995
1795504913591009839 ~1995
1795552193591104399 ~1995
Home
4.724.182 digits
e-mail
25-04-13