Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1731623033463246079 ~1995
173162417138529933710 ~1997
173163337103898002310 ~1997
1731645593463291199 ~1995
1731726833463453679 ~1995
1731734993463469999 ~1995
1731763692459104439911 ~2000
173176559138541247310 ~1997
1731797033463594079 ~1995
173181731311727115910 ~1998
1731822714191010958311 ~2000
1731888593463777199 ~1995
173194121103916472710 ~1997
1731950633463901279 ~1995
173195119173195119110 ~1997
173198021103918812710 ~1997
1732006793464013599 ~1995
1732008833464017679 ~1995
1732058393464116799 ~1995
1732142633464285279 ~1995
1732169993464339999 ~1995
173225341103935204710 ~1997
173229187173229187110 ~1997
1732365593464731199 ~1995
173240267970145495310 ~1999
Exponent Prime Factor Digits Year
1732465193464930399 ~1995
1732485713464971439 ~1995
1732556393465112799 ~1995
1732573793465147599 ~1995
1732708193465416399 ~1995
173277823173277823110 ~1997
173278667311901600710 ~1998
1732797833465595679 ~1995
173282443693129772110 ~1999
1732828071143666526311 ~1999
1732897313465794639 ~1995
173298361277277377710 ~1998
1733019593466039199 ~1995
1733050433466100879 ~1995
173305427138644341710 ~1997
173311139311960050310 ~1998
173315689415957653710 ~1998
1733178713466357439 ~1995
1733267393466534799 ~1995
1733302433466604879 ~1995
1733328233466656479 ~1995
173333669138666935310 ~1997
1733345993466691999 ~1995
1733359313466718639 ~1995
1733385593466771199 ~1995
Exponent Prime Factor Digits Year
1733397233466794479 ~1995
173343733104006239910 ~1997
1733438513466877039 ~1995
173352373104011423910 ~1997
173352581104011548710 ~1997
1733549393467098799 ~1995
173360261138688208910 ~1997
1733644913467289839 ~1995
1733665193467330399 ~1995
173371591173371591110 ~1997
1733720993467441999 ~1995
1733722913467445839 ~1995
173374087173374087110 ~1997
1733882633467765279 ~1995
173390641104034384710 ~1997
1733910593467821199 ~1995
1733920313467840639 ~1995
1733981033467962079 ~1995
173405977104043586310 ~1997
1734082433468164879 ~1995
173412611450872788710 ~1998
1734150833468301679 ~1995
173415353104049211910 ~1997
1734183593468367199 ~1995
1734188033468376079 ~1995
Exponent Prime Factor Digits Year
173419633104051779910 ~1997
1734296033468592079 ~1995
173431421138745136910 ~1997
173431831693727324110 ~1999
1734346193468692399 ~1995
1734415913468831839 ~1995
1734447233468894479 ~1995
1734535433469070879 ~1995
1734581393469162799 ~1995
1734658193469316399 ~1995
1734667433469334879 ~1995
173467901104080740710 ~1997
1734690833469381679 ~1995
173469551312245191910 ~1998
1734702593469405199 ~1995
173478101104086860710 ~1997
173478497104087098310 ~1997
173481809138785447310 ~1997
1734865913469731839 ~1995
1734870593469741199 ~1995
1734887513469775039 ~1995
1734893633469787279 ~1995
1734946793469893599 ~1995
1735024193470048399 ~1995
1735066913470133839 ~1995
Home
4.888.230 digits
e-mail
25-06-29