Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1787238593574477199 ~1995
1787259713574519439 ~1995
1787269793574539599 ~1995
1787359193574718399 ~1995
178747451142997960910 ~1997
1787509193575018399 ~1995
1787558513575117039 ~1995
178759169143007335310 ~1997
1787603393575206799 ~1995
1787656793575313599 ~1995
1787693033575386079 ~1995
1787720033575440079 ~1995
178776571178776571110 ~1997
178779353107267611910 ~1997
1787824793575649599 ~1995
1787840517866498244111 ~2001
1787927393575854799 ~1995
1787950793575901599 ~1995
178798357107279014310 ~1997
178801877143041501710 ~1997
1788045833576091679 ~1995
178809511286095217710 ~1998
1788130913576261839 ~1995
178818841286110145710 ~1998
178827043178827043110 ~1997
Exponent Prime Factor Digits Year
1788271913576543839 ~1995
178829401107297640710 ~1997
1788345593576691199 ~1995
178835081107301048710 ~1997
1788381113576762239 ~1995
1788386033576772079 ~1995
1788420113576840239 ~1995
178851931321933475910 ~1998
1788554033577108079 ~1995
1788587633577175279 ~1995
178859773822754955910 ~1999
178870963178870963110 ~1997
1788758393577516799 ~1995
1788796433577592879 ~1995
1788813833577627679 ~1995
1788849833577699679 ~1995
1788865371431092296111 ~1999
1788894713577789439 ~1995
1788915233577830479 ~1995
178896827143117461710 ~1997
1789168793578337599 ~1995
1789189193578378399 ~1995
1789243913578487839 ~1995
178924573107354743910 ~1997
1789279793578559599 ~1995
Exponent Prime Factor Digits Year
1789282793578565599 ~1995
1789300793578601599 ~1995
1789348913578697839 ~1995
178935241107361144710 ~1997
1789388993578777999 ~1995
1789451993578903999 ~1995
178945297107367178310 ~1997
1789475393578950799 ~1995
1789494833578989679 ~1995
178952383286323812910 ~1998
1789563593579127199 ~1995
1789629113579258239 ~1995
1789662113579324239 ~1995
178969001143175200910 ~1997
1789703993579407999 ~1995
178974617143179693710 ~1997
1789826513579653039 ~1995
1789912313579824639 ~1995
1789932113579864239 ~1995
1789968713579937439 ~1995
178998553107399131910 ~1997
1789997393579994799 ~1995
1790009033580018079 ~1995
1790015033580030079 ~1995
1790023313580046639 ~1995
Exponent Prime Factor Digits Year
179008877107405326310 ~1997
1790088833580177679 ~1995
1790089433580178879 ~1995
1790193833580387679 ~1995
1790208113580416239 ~1995
179023891179023891110 ~1997
1790250233580500479 ~1995
179026717107416030310 ~1997
1790287433580574879 ~1995
1790294513580589039 ~1995
1790357513580715039 ~1995
1790367233580734479 ~1995
1790415593580831199 ~1995
1790617913581235839 ~1995
1790672633581345279 ~1995
179069117107441470310 ~1997
1790848913581697839 ~1995
1790883233581766479 ~1995
1790894393581788799 ~1995
1790916833581833679 ~1995
1790953793581907599 ~1995
179098937143279149710 ~1997
1791007313582014639 ~1995
1791042833582085679 ~1995
1791180593582361199 ~1995
Home
4.724.182 digits
e-mail
25-04-13