Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1548831593097663199 ~1995
154888087154888087110 ~1997
1548930713097861439 ~1995
1548944513097889039 ~1995
154897279154897279110 ~1997
1549033193098066399 ~1995
1549049993098099999 ~1995
1549205331487237116911 ~1999
1549207139295242799 ~1996
1549225913098451839 ~1995
1549226339295357999 ~1996
154928351123942680910 ~1996
1549317233098634479 ~1995
1549323593098647199 ~1995
1549347379296084239 ~1996
154934837123947869710 ~1996
1549366793098733599 ~1995
154938859526792120710 ~1998
1549420193098840399 ~1995
1549450793098901599 ~1995
1549455593098911199 ~1995
1549474913098949839 ~1995
1549488833098977679 ~1995
154956733619826932110 ~1998
1549573913099147839 ~1995
Exponent Prime Factor Digits Year
1549590619297543679 ~1996
1549638593099277199 ~1995
1549649633099299279 ~1995
1549740779298444639 ~1996
1549758713099517439 ~1995
1549804313099608639 ~1995
154982491154982491110 ~1997
1549841393099682799 ~1995
1549925993099851999 ~1995
1550010139300060799 ~1996
1550017793100035599 ~1995
1550019233100038479 ~1995
155004481248007169710 ~1997
1550054513100109039 ~1995
1550069033100138079 ~1995
1550080433100160879 ~1995
1550111633100223279 ~1995
1550134313100268639 ~1995
1550146793100293599 ~1995
1550178539301071199 ~1996
155020079279036142310 ~1997
1550220113100440239 ~1995
1550220713100441439 ~1995
1550340833100681679 ~1995
1550341379302048239 ~1996
Exponent Prime Factor Digits Year
1550396033100792079 ~1995
1550423419302540479 ~1996
1550457113100914239 ~1995
155050067124040053710 ~1996
1550526593101053199 ~1995
1550581313101162639 ~1995
155061509124049207310 ~1996
1550634233101268479 ~1995
1550638193101276399 ~1995
1550646593101293199 ~1995
1550682233101364479 ~1995
155071879155071879110 ~1997
1550723993101447999 ~1995
1550734275210467147311 ~2000
155073671124058936910 ~1996
155079893217111850310 ~1997
1550812193101624399 ~1995
1550851793101703599 ~1995
1550860313101720639 ~1995
1550915513101831039 ~1995
1550923313101846639 ~1995
1550925833101851679 ~1995
1550930513101861039 ~1995
155093387124074709710 ~1996
155095639155095639110 ~1997
Exponent Prime Factor Digits Year
1550959379305756239 ~1996
1550963033101926079 ~1995
1550967833101935679 ~1995
155097179372233229710 ~1998
1550999633101999279 ~1995
155104153248166644910 ~1997
1551083513102167039 ~1995
1551094313102188639 ~1995
1551167393102334799 ~1995
155120323155120323110 ~1997
1551242513102485039 ~1995
1551270419307622479 ~1996
155129213217180898310 ~1997
155131519155131519110 ~1997
1551351113102702239 ~1995
1551469913102939839 ~1995
1551488633102977279 ~1995
1551545579309273439 ~1996
1551562313103124639 ~1995
1551563633103127279 ~1995
1551622913103245839 ~1995
155166959124133567310 ~1996
1551685979310115839 ~1996
155170723155170723110 ~1997
1551721139310326799 ~1996
Home
4.768.925 digits
e-mail
25-05-04