Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1773094793546189599 ~1995
1773147233546294479 ~1995
1773157913546315839 ~1995
177318133106390879910 ~1997
1773213113546426239 ~1995
177324737106394842310 ~1997
1773324833546649679 ~1995
1773366113546732239 ~1995
1773415193546830399 ~1995
1773460793546921599 ~1995
1773462593546925199 ~1995
1773485993546971999 ~1995
1773492233546984479 ~1995
177359033106415419910 ~1997
177361553106416931910 ~1997
177364543603039446310 ~1998
177365473106419283910 ~1997
177365933106419559910 ~1997
177368281106420968710 ~1997
1773703793547407599 ~1995
177373993106424395910 ~1997
1773745793547491599 ~1995
1773766793547533599 ~1995
1773848033547696079 ~1995
1773871793547743599 ~1995
Exponent Prime Factor Digits Year
177387887141910309710 ~1997
1773899393547798799 ~1995
1773928433547856879 ~1995
1773928793547857599 ~1995
1773975233547950479 ~1995
1774002713548005439 ~1995
177400451141920360910 ~1997
1774013033548026079 ~1995
1774048793548097599 ~1995
177412229141929783310 ~1997
1774201793548403599 ~1995
1774208633548417279 ~1995
177429431141943544910 ~1997
1774311833548623679 ~1995
1774315433548630879 ~1995
1774332713548665439 ~1995
177441997106465198310 ~1997
1774446713548893439 ~1995
177449087141959269710 ~1997
1774532993549065999 ~1995
1774551113549102239 ~1995
1774607993549215999 ~1995
1774713833549427679 ~1995
1774717433549434879 ~1995
1774753793549507599 ~1995
Exponent Prime Factor Digits Year
1774764833549529679 ~1995
177478241141982592910 ~1997
1774800713549601439 ~1995
177482251283971601710 ~1998
1774912433549824879 ~1995
1774942793549885599 ~1995
177496351177496351110 ~1997
1774974233549948479 ~1995
1774977593549955199 ~1995
1774996313549992639 ~1995
1775013713550027439 ~1995
1775037911455531086311 ~1999
1775038313550076639 ~1995
1775079233550158479 ~1995
177516301106509780710 ~1997
177523279177523279110 ~1997
1775256713550513439 ~1995
1775277713550555439 ~1995
1775301593550603199 ~1995
1775383313550766639 ~1995
177543181106525908710 ~1997
1775463713550927439 ~1995
1775493713550987439 ~1995
177550301532650903110 ~1998
1775531633551063279 ~1995
Exponent Prime Factor Digits Year
1775581313551162639 ~1995
177564529390641963910 ~1998
1775732993551465999 ~1995
177574457106544674310 ~1997
1775775113551550239 ~1995
1775855033551710079 ~1995
177590563177590563110 ~1997
177593279142074623310 ~1997
1775972633551945279 ~1995
1776004313552008639 ~1995
1776025313552050639 ~1995
1776025433552050879 ~1995
1776072592024722752711 ~2000
177610331142088264910 ~1997
1776103793552207599 ~1995
1776118913552237839 ~1995
177612971142090376910 ~1997
177616927177616927110 ~1997
177624001106574400710 ~1997
1776255593552511199 ~1995
1776275033552550079 ~1995
1776298911421039128111 ~1999
177632137106579282310 ~1997
1776339713552679439 ~1995
1776447233552894479 ~1995
Home
4.724.182 digits
e-mail
25-04-13