Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1776451193552902399 ~1995
1776454313552908639 ~1995
177652457106591474310 ~1997
1776618113553236239 ~1995
1776619433553238879 ~1995
177673361106604016710 ~1997
1776769913553539839 ~1995
1776782393553564799 ~1995
1776828593553657199 ~1995
1776841793553683599 ~1995
1776857992878509943911 ~2000
177691403568612489710 ~1998
1776917993553835999 ~1995
1777012913554025839 ~1995
177702121106621272710 ~1997
177703151142162520910 ~1997
177704339568653884910 ~1998
1777138913554277839 ~1995
1777145033554290079 ~1995
177720253106632151910 ~1997
177720553106632331910 ~1997
177721837106633102310 ~1997
1777224233554448479 ~1995
1777257113554514239 ~1995
177728437106637062310 ~1997
Exponent Prime Factor Digits Year
1777311593554623199 ~1995
177731291142185032910 ~1997
1777313633554627279 ~1995
1777347833554695679 ~1995
177735377248829527910 ~1997
177740369248836516710 ~1997
177743437106646062310 ~1997
177746531568788899310 ~1998
177748861106649316710 ~1997
1777623113555246239 ~1995
177762691177762691110 ~1997
1777637393555274799 ~1995
1777664993555329999 ~1995
1777690793555381599 ~1995
1777749113555498239 ~1995
177776561106665936710 ~1997
1777788233555576479 ~1995
177783293106669975910 ~1997
177784613106670767910 ~1997
1777931633555863279 ~1995
177802769142242215310 ~1997
1778053193556106399 ~1995
1778175713556351439 ~1995
1778196833556393679 ~1995
1778197313556394639 ~1995
Exponent Prime Factor Digits Year
1778216033556432079 ~1995
177823769142259015310 ~1997
1778257433556514879 ~1995
1778285033556570079 ~1995
1778298713556597439 ~1995
177830357142264285710 ~1997
177839213106703527910 ~1997
1778460593556921199 ~1995
1778466713556933439 ~1995
1778476433556952879 ~1995
1778500193557000399 ~1995
1778555393557110799 ~1995
1778627993557255999 ~1995
1778633633557267279 ~1995
1778660633557321279 ~1995
177872671747065218310 ~1999
1778733731672009706311 ~2000
177875561142300448910 ~1997
177878381106727028710 ~1997
177881267142305013710 ~1997
177886913249041678310 ~1997
1778896433557792879 ~1995
177890311177890311110 ~1997
177893347284629355310 ~1998
1778935913557871839 ~1995
Exponent Prime Factor Digits Year
177903373106742023910 ~1997
1779044033558088079 ~1995
1779045113558090239 ~1995
1779120833558241679 ~1995
177913873284662196910 ~1998
1779164633558329279 ~1995
1779179473309273814311 ~2000
1779182633558365279 ~1995
1779244193558488399 ~1995
1779274433558548879 ~1995
1779286313558572639 ~1995
1779312233558624479 ~1995
1779379433558758879 ~1995
177939653106763791910 ~1997
1779432113558864239 ~1995
1779547571566001861711 ~1999
1779600113559200239 ~1995
1779613193559226399 ~1995
177963697284741915310 ~1998
1779657593559315199 ~1995
1779710633559421279 ~1995
1779716633559433279 ~1995
1779755993559511999 ~1995
1779782993559565999 ~1995
1779812033559624079 ~1995
Home
4.724.182 digits
e-mail
25-04-13