Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1010517592021035199 ~1993
101051939424418143910 ~1997
1010533912021067839 ~1993
1010545378084362979 ~1995
1010570632021141279 ~1993
1010575312021150639 ~1993
1010595592021191199 ~1993
1010650912021301839 ~1993
1010660512021321039 ~1993
1010664016063984079 ~1995
1010669392021338799 ~1993
101075587242581408910 ~1996
1010769536064617199 ~1995
1010783632021567279 ~1993
1010843878086750979 ~1995
1010854312021708639 ~1993
1010871832021743679 ~1993
1010882032021764079 ~1993
1010917792021835599 ~1993
1010935918087487299 ~1995
1010938192021876399 ~1993
1010964176065785039 ~1995
1010971792021943599 ~1993
1010972032021944079 ~1993
1010979112021958239 ~1993
Exponent Prime Factor Digits Year
1011031432022062879 ~1993
1011033712022067439 ~1993
1011072832022145679 ~1993
1011074632022149279 ~1993
1011080176066481039 ~1995
1011088736066532399 ~1995
101109223101109223110 ~1995
1011094018088752099 ~1995
1011096232022192479 ~1993
1011097192022194399 ~1993
101112827182003088710 ~1996
1011143392022286799 ~1993
1011183832022367679 ~1993
1011212698089701539 ~1995
1011215992022431999 ~1993
1011220192022440399 ~1993
1011226432022452879 ~1993
1011246232022492479 ~1993
1011264072831539396111 ~1999
101127547101127547110 ~1995
1011277312022554639 ~1993
1011307192022614399 ~1993
1011308032022616079 ~1993
1011314032022628079 ~1993
1011314416067886479 ~1995
Exponent Prime Factor Digits Year
1011328912022657839 ~1993
1011332936067997599 ~1995
1011334192022668399 ~1993
101134081161814529710 ~1996
1011378712022757439 ~1993
1011394312022788639 ~1993
1011394912022789839 ~1993
1011400198091201539 ~1995
1011426832022853679 ~1993
1011439016068634079 ~1995
1011441112022882239 ~1993
1011448432022896879 ~1993
1011456592022913199 ~1993
1011459592022919199 ~1993
101147171182064907910 ~1996
1011501112023002239 ~1993
1011501232023002479 ~1993
1011535792023071599 ~1993
1011553312023106639 ~1993
101160029303480087110 ~1996
1011670192023340399 ~1993
101168273141635582310 ~1996
1011712978093703779 ~1995
101173519101173519110 ~1995
1011745432023490879 ~1993
Exponent Prime Factor Digits Year
1011773392023546799 ~1993
1011833992023667999 ~1993
1011851632023703279 ~1993
1011852898094823139 ~1995
1011855232023710479 ~1993
1011874912023749839 ~1993
1011884632023769279 ~1993
1011918592023837199 ~1993
1011921376071528239 ~1995
1011935392023870799 ~1993
1011943912023887839 ~1993
1011952912023905839 ~1993
1011984112023968239 ~1993
1011988136071928799 ~1995
1011988792023977599 ~1993
1011991792023983599 ~1993
1012011832024023679 ~1993
1012044232024088479 ~1993
1012049512024099039 ~1993
1012050112024100239 ~1993
1012073992024147999 ~1993
1012089232024178479 ~1993
1012120376072722239 ~1995
1012165792024331599 ~1993
1012172878097382979 ~1995
Home
4.724.182 digits
e-mail
25-04-13