Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1008377032016754079 ~1993
1008386032016772079 ~1993
1008451976050711839 ~1995
1008499432016998879 ~1993
100850593221871304710 ~1996
1008532018068256099 ~1995
1008547912017095839 ~1993
1008575512017151039 ~1993
1008654736051928399 ~1995
1008655816051934879 ~1995
1008682798069462339 ~1995
1008708536052251199 ~1995
1008742192017484399 ~1993
1008758392017516799 ~1993
1008777898070223139 ~1995
1008800891190385050311 ~1998
100880587181585056710 ~1996
1008830936052985599 ~1995
1008876176053257039 ~1995
1008921178071369379 ~1995
1008925792017851599 ~1993
1008953032017906079 ~1993
1008968392017936799 ~1993
100898107887903341710 ~1998
1009050232018100479 ~1993
Exponent Prime Factor Digits Year
1009065832018131679 ~1993
1009073632018147279 ~1993
1009073776054442639 ~1995
100912351181642231910 ~1996
1009136512018273039 ~1993
100913873141279422310 ~1996
1009168312018336639 ~1993
1009177792018355599 ~1993
1009208632018417279 ~1993
1009230832018461679 ~1993
1009242592018485199 ~1993
1009243312018486639 ~1993
1009249192018498399 ~1993
1009249318073994499 ~1995
1009249912018499839 ~1993
1009268536055611199 ~1995
1009274512018549039 ~1993
1009274992018549999 ~1993
1009292816055756879 ~1995
1009355398074843139 ~1995
1009356712018713439 ~1993
1009368592018737199 ~1993
1009378678075029379 ~1995
1009385992018771999 ~1993
1009422232018844479 ~1993
Exponent Prime Factor Digits Year
100942363100942363110 ~1995
100942711181696879910 ~1996
1009430392018860799 ~1993
1009455478075643779 ~1995
1009459792018919599 ~1993
1009512232019024479 ~1993
1009514512019029039 ~1993
1009514632019029279 ~1993
1009516336057097999 ~1995
1009518592019037199 ~1993
1009529632019059279 ~1993
1009553632019107279 ~1993
100956071181720927910 ~1996
1009564192019128399 ~1993
1009604392019208799 ~1993
1009618792019237599 ~1993
1009624192019248399 ~1993
100963117464430338310 ~1997
1009631512019263039 ~1993
1009632232019264479 ~1993
1009642678077141379 ~1995
1009668232019336479 ~1993
1009684432019368879 ~1993
1009694992019389999 ~1993
1009705432019410879 ~1993
Exponent Prime Factor Digits Year
1009733578077868579 ~1995
1009764712019529439 ~1993
1009784632019569279 ~1993
100982327908840943110 ~1998
1009830592019661199 ~1993
1009854592019709199 ~1993
100987129222171683910 ~1996
1009882432019764879 ~1993
1010082232020164479 ~1993
1010125192020250399 ~1993
1010136832020273679 ~1993
1010175778081406179 ~1995
1010182792020365599 ~1993
1010207632020415279 ~1993
1010240392020480799 ~1993
10102862314487504538312 ~2001
1010296192020592399 ~1993
1010318032020636079 ~1993
1010325232020650479 ~1993
1010351336062107999 ~1995
1010399032020798079 ~1993
101041459242499501710 ~1996
1010424112020848239 ~1993
1010478832020957679 ~1993
101051287646728236910 ~1997
Home
4.724.182 digits
e-mail
25-04-13