Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3521667402832606...78094314 2024
3522063559014508...55532914 2024
3522451435191690...88891314 2024
35224665554370449331108712 ~2021
35224929907170449859814312 ~2021
3522729354011409...41604114 2024
35228754247170457508494312 ~2021
35229670976370459341952712 ~2021
35233506884370467013768712 ~2021
35234345135970468690271912 ~2021
35234441011170468882022312 ~2021
35237934341970475868683912 ~2021
35242685869170485371738312 ~2021
35244757775970489515551912 ~2021
3524760133394018...52064714 2024
35250506437170501012874312 ~2021
35253006277170506012554312 ~2021
35259043343970518086687912 ~2021
35263123736370526247472712 ~2021
35264398069170528796138312 ~2021
35264703728370529407456712 ~2021
35268960917970537921835912 ~2021
35274033245970548066491912 ~2021
35276978678370553957356712 ~2021
35278774091970557548183912 ~2021
Exponent Prime Factor Dig. Year
35279433589170558867178312 ~2021
35280347951970560695903912 ~2021
35283631574370567263148712 ~2021
35287344397170574688794312 ~2021
35290525141170581050282312 ~2021
35297108513970594217027912 ~2021
35302044127170604088254312 ~2021
35303677811970607355623912 ~2021
35311201991970622403983912 ~2021
35312565701970625131403912 ~2021
35312661553170625323106312 ~2021
35313259592370626519184712 ~2021
35313515983170627031966312 ~2021
35313662257170627324514312 ~2021
35315380958370630761916712 ~2021
35316734983170633469966312 ~2021
35319739981170639479962312 ~2021
35320430819970640861639912 ~2021
35322833335170645666670312 ~2021
35322969734370645939468712 ~2021
35323541863170647083726312 ~2021
35324340527970648681055912 ~2021
35327174933970654349867912 ~2021
3532879681014522...91692914 2024
35329763570370659527140712 ~2021
Exponent Prime Factor Dig. Year
3533100373573109...28741714 2024
35331574291170663148582312 ~2021
35335683929970671367859912 ~2021
3533756020611130...65952115 2024
3534102342717421...19691114 2025
35341145996370682291992712 ~2021
3534154030571328...54943315 2025
35343097373970686194747912 ~2021
35346652604370693305208712 ~2021
35348671772370697343544712 ~2021
35350618832370701237664712 ~2021
35352677495970705354991912 ~2021
3535420419772828...35816114 2024
35354756882370709513764712 ~2021
35355476780370710953560712 ~2021
3536423358776224...11435314 2025
3536478125637638...51360914 2025
3536632301813607...47846314 2024
35368494295170736988590312 ~2021
35368563727170737127454312 ~2021
35369730089970739460179912 ~2021
35372270648370744541296712 ~2021
35380931489970761862979912 ~2021
35382749999970765499999912 ~2021
35383686767970767373535912 ~2021
Exponent Prime Factor Dig. Year
35384419520370768839040712 ~2021
35385159002370770318004712 ~2021
35388215437170776430874312 ~2021
35390317880370780635760712 ~2021
35390347915170780695830312 ~2021
35390487578370780975156712 ~2021
35390880038370781760076712 ~2021
35391661994370783323988712 ~2021
35391961213170783922426312 ~2021
3539220612679343...17448914 2025
35394243725970788487451912 ~2021
35394898333170789796666312 ~2021
35397475427970794950855912 ~2021
35398744225170797488450312 ~2021
35401000856370802001712712 ~2021
35403895238370807790476712 ~2021
35408387021970816774043912 ~2021
3540859384332478...69031114 2024
35418701207970837402415912 ~2021
35420551280370841102560712 ~2021
35423849303970847698607912 ~2021
35425947913170851895826312 ~2021
35426940341970853880683912 ~2021
35429725003170859450006312 ~2021
35431723573170863447146312 ~2021
Home
5.307.017 digits
e-mail
26-01-11