Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
3502589591233712...66703914 2024
35027541263970055082527912 ~2021
35032414040370064828080712 ~2021
35033599616370067199232712 ~2021
35034556717170069113434312 ~2021
3503535769079249...30344914 2025
3503684542571401...17028114 2024
35036959391970073918783912 ~2021
35037170348370074340696712 ~2021
35038518437970077036875912 ~2021
35039602490370079204980712 ~2021
35040641444370081282888712 ~2021
35041654436370083308872712 ~2021
35043506765970087013531912 ~2021
35045043223170090086446312 ~2021
35045618321970091236643912 ~2021
35045775728370091551456712 ~2021
35047671230370095342460712 ~2021
35048997131970097994263912 ~2021
3504903715071682...83233714 2024
35054451541170108903082312 ~2021
3505798108094136...67546314 2024
3505960628772454...40139114 2024
35061900077970123800155912 ~2021
35063063833170126127666312 ~2021
Exponent Prime Factor Dig. Year
3506503641234207...69476114 2024
35065389653970130779307912 ~2021
35065650917970131301835912 ~2021
35068588019970137176039912 ~2021
35069091668370138183336712 ~2021
35070007519170140015038312 ~2021
35073960265170147920530312 ~2021
3507460322891402...29156114 2024
35075123744370150247488712 ~2021
35079242846370158485692712 ~2021
35080982150370161964300712 ~2021
35081713202370163426404712 ~2021
35083221151170166442302312 ~2021
35083508165970167016331912 ~2021
35085192247170170384494312 ~2021
3508830081313368...78057714 2024
35089359455970178718911912 ~2021
35091798701970183597403912 ~2021
35098134197970196268395912 ~2021
35098578913170197157826312 ~2021
35102528777970205057555912 ~2021
35102740409970205480819912 ~2021
35109064927170218129854312 ~2021
35112048895170224097790312 ~2021
35113604702370227209404712 ~2021
Exponent Prime Factor Dig. Year
3511385321032598...37562314 2024
3512103616811151...63136915 2025
35121764531970243529063912 ~2021
35126660801970253321603912 ~2021
35127411361170254822722312 ~2021
35130582245970261164491912 ~2021
35131274563170262549126312 ~2021
35133972749970267945499912 ~2021
35137776398370275552796712 ~2021
35138837966370277675932712 ~2021
35141028743970282057487912 ~2021
35141858117970283716235912 ~2021
35147209895970294419791912 ~2021
35156927522370313855044712 ~2021
35159446567170318893134312 ~2021
35160057239970320114479912 ~2021
35164326959970328653919912 ~2021
3516621798671687...63361714 2024
35168234546370336469092712 ~2021
35168679998370337359996712 ~2021
35169268184370338536368712 ~2021
35170214801970340429603912 ~2021
3517033288337526...37026314 2025
35172525434370345050868712 ~2021
35172978614370345957228712 ~2021
Exponent Prime Factor Dig. Year
35174394551970348789103912 ~2021
3517513962371540...55180715 2024
35175290875170350581750312 ~2021
35176073965170352147930312 ~2021
35176946432370353892864712 ~2021
3517812116712040...27691914 2025
35179434337170358868674312 ~2021
3518156265532730...20512915 2024
35181604235970363208471912 ~2021
35183422757970366845515912 ~2021
35187116579970374233159912 ~2021
35191630097970383260195912 ~2021
35194693118370389386236712 ~2021
35195456323170390912646312 ~2021
35197130065170394260130312 ~2021
3519779301191478...06499914 2024
35198743045170397486090312 ~2021
3520093632715603...32743315 2026
35203387211970406774423912 ~2021
35203840477170407680954312 ~2021
35204970595170409941190312 ~2021
35206713158370413426316712 ~2021
35206985738370413971476712 ~2021
35210273573970420547147912 ~2021
3521266408093373...89502315 2024
Home
5.307.017 digits
e-mail
26-01-11