Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13412496596326824993192712 ~2018
13413566839126827133678312 ~2018
13413908857126827817714312 ~2018
13415097638326830195276712 ~2018
13416046698180496280188712 ~2019
13416382787926832765575912 ~2018
13417380787780504284726312 ~2019
13417546524180505279144712 ~2019
13417920232180507521392712 ~2019
13418246692180509480152712 ~2019
13418359745926836719491912 ~2018
13419220229926838440459912 ~2018
13419671461126839342922312 ~2018
13420040053126840080106312 ~2018
13421624372326843248744712 ~2018
13422688573126845377146312 ~2018
13423284985126846569970312 ~2018
13423893511126847787022312 ~2018
13424357150326848714300712 ~2018
13425506375926851012751912 ~2018
13425684297780554105786312 ~2019
1342606436772287...82560915 2025
13426636307926853272615912 ~2018
13426790618326853581236712 ~2018
13426876957126853753914312 ~2018
Exponent Prime Factor Dig. Year
13427682133126855364266312 ~2018
13428481538326856963076712 ~2018
13428536336326857072672712 ~2018
13428840377926857680755912 ~2018
13428953783926857907567912 ~2018
13428982360180573894160712 ~2019
13429007455380574044731912 ~2019
13430336023126860672046312 ~2018
13430950975126861901950312 ~2018
13431148928326862297856712 ~2018
13431835853926863671707912 ~2018
13432005703126864011406312 ~2018
13432007446180592044676712 ~2019
13432031803126864063606312 ~2018
13434074600326868149200712 ~2018
13435873120180615238720712 ~2019
13436089556326872179112712 ~2018
13437227665780623365994312 ~2019
13437574241926875148483912 ~2018
13437601673926875203347912 ~2018
13438090634326876181268712 ~2018
13438259765926876519531912 ~2018
13439020531780634123190312 ~2019
13439025499126878050998312 ~2018
13439173825126878347650312 ~2018
Exponent Prime Factor Dig. Year
13439214019126878428038312 ~2018
13439307068326878614136712 ~2018
13440259627780641557766312 ~2019
13440523717126881047434312 ~2018
13441345319926882690639912 ~2018
13441698349780650190098312 ~2019
13443007259926886014519912 ~2018
13443442345126886884690312 ~2018
13443668012326887336024712 ~2018
13443986625780663919754312 ~2019
1344444167091129...03556115 2025
13446709328326893418656712 ~2018
1344757004831441...91777715 2023
13448680357126897360714312 ~2018
13450864631926901729263912 ~2018
13450959677926901919355912 ~2018
13451299993126902599986312 ~2018
13451918459926903836919912 ~2018
1345247921171474...16023315 2025
13452963212326905926424712 ~2018
13453528504180721171024712 ~2019
13455004199926910008399912 ~2018
13455221957926910443915912 ~2018
13455285731926910571463912 ~2018
13456928306326913856612712 ~2018
Exponent Prime Factor Dig. Year
13457061227926914122455912 ~2018
13457643361126915286722312 ~2018
13459413236326918826472712 ~2018
13460405577780762433466312 ~2019
13460608147380763648883912 ~2019
13461352211926922704423912 ~2018
13461535039380769210235912 ~2019
13462597808326925195616712 ~2018
13462773020326925546040712 ~2018
13463297171926926594343912 ~2018
13463773350180782640100712 ~2019
1346494217419910...40137714 2025
13465319348326930638696712 ~2018
13465859576326931719152712 ~2018
13466195329126932390658312 ~2018
13466275194180797651164712 ~2019
13466637530326933275060712 ~2018
13467076184326934152368712 ~2018
13467141782326934283564712 ~2018
13467284143126934568286312 ~2018
13467521258326935042516712 ~2018
13467577687126935155374312 ~2018
13467995059126935990118312 ~2018
13468678207126937356414312 ~2018
1346970350931616...21116114 2024
Home
5.366.787 digits
e-mail
26-02-08