Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19609594075139219188150312 ~2019
19611030758339222061516712 ~2019
19613197141139226394282312 ~2019
1961437887611035...46580915 2025
19615099289939230198579912 ~2019
19615686535139231373070312 ~2019
19615767980339231535960712 ~2019
19616765209139233530418312 ~2019
19617134789939234269579912 ~2019
19618008797939236017595912 ~2019
19619118695939238237391912 ~2019
19619202053939238404107912 ~2019
19619721620339239443240712 ~2019
19620300023939240600047912 ~2019
19621770506339243541012712 ~2019
19624179998339248359996712 ~2019
19626985670339253971340712 ~2019
19627562515139255125030312 ~2019
19628627282339257254564712 ~2019
19630221743939260443487912 ~2019
19633787269139267574538312 ~2019
1963731487611688...79344714 2024
19637976407939275952815912 ~2019
19641362299139282724598312 ~2019
19642144075139284288150312 ~2019
Exponent Prime Factor Dig. Year
1964220806891374...64823114 2024
19644998989139289997978312 ~2019
19645289621939290579243912 ~2019
19649199671939298399343912 ~2019
19652035627139304071254312 ~2019
19652773223939305546447912 ~2019
19653074267939306148535912 ~2019
19653083798339306167596712 ~2019
19653686888339307373776712 ~2019
19654184071139308368142312 ~2019
1965514461978451...86471114 2025
19655832092339311664184712 ~2019
19656327361139312654722312 ~2019
19656993005939313986011912 ~2019
19657939340339315878680712 ~2019
19659171857939318343715912 ~2019
19662514603139325029206312 ~2019
1966350499137078...96868114 2025
19665034595939330069191912 ~2019
19666327868339332655736712 ~2019
19666491047939332982095912 ~2019
19666893919139333787838312 ~2019
19667291522339334583044712 ~2019
19669873616339339747232712 ~2019
1967215723912400...83170314 2024
Exponent Prime Factor Dig. Year
19672549427939345098855912 ~2019
19673237785139346475570312 ~2019
19673726539139347453078312 ~2019
1967413506534367...84496714 2023
1967707401193305...33999314 2024
19677088982339354177964712 ~2019
1967726168471448...99939315 2024
19677510287939355020575912 ~2019
19678699766339357399532712 ~2019
19680910529939361821059912 ~2019
19683851252339367702504712 ~2019
19684392320339368784640712 ~2019
19684718762339369437524712 ~2019
19685685079139371370158312 ~2019
19686006871139372013742312 ~2019
19686131681939372263363912 ~2019
19688078611139376157222312 ~2019
19689595928339379191856712 ~2019
19692403561139384807122312 ~2019
19693706929139387413858312 ~2019
19693734560339387469120712 ~2019
19693785107939387570215912 ~2019
19696197091139392394182312 ~2019
1969676530138154...34738314 2023
19697221049939394442099912 ~2019
Exponent Prime Factor Dig. Year
19698954803939397909607912 ~2019
19698992747939397985495912 ~2019
19699203653939398407307912 ~2019
19700079853139400159706312 ~2019
1970048403372281...11024715 2025
19707046028339414092056712 ~2019
19707960341939415920683912 ~2019
19709244227939418488455912 ~2019
19709368178339418736356712 ~2019
1971126303971216...07107916 2025
19711892921939423785843912 ~2019
19714171267139428342534312 ~2019
19715367485939430734971912 ~2019
1971627165117610...57324714 2023
1971813189491321...69583115 2023
19718786095139437572190312 ~2019
19719560053139439120106312 ~2019
19720613765939441227531912 ~2019
19721739835139443479670312 ~2019
19721937716339443875432712 ~2019
19722172208339444344416712 ~2019
19722293933939444587867912 ~2019
19723116563939446233127912 ~2019
19724818505939449637011912 ~2019
1972569742677862...42826315 2024
Home
5.307.017 digits
e-mail
26-01-11