Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
15755483150331510966300712 ~2018
15755812195131511624390312 ~2018
1575632884092993...79771114 2024
15757822795131515645590312 ~2018
15758397163131516794326312 ~2018
15760507835931521015671912 ~2018
15761733349131523466698312 ~2018
15762119897931524239795912 ~2018
15762233599131524467198312 ~2018
15763303280331526606560712 ~2018
15763576451931527152903912 ~2018
15767141609931534283219912 ~2018
15768472892331536945784712 ~2018
15770104604331540209208712 ~2018
15771181507131542363014312 ~2018
15771283019931542566039912 ~2018
1577177065816434...28504914 2025
15775506818331551013636712 ~2018
15776663393931553326787912 ~2018
15778856600331557713200712 ~2018
1577896420913418...54360716 2023
15779591437131559182874312 ~2018
15782625887931565251775912 ~2018
15783004163931566008327912 ~2018
15783224041131566448082312 ~2018
Exponent Prime Factor Dig. Year
15783839600331567679200712 ~2018
15783904879131567809758312 ~2018
15784479761931568959523912 ~2018
15786631957131573263914312 ~2018
15787142555931574285111912 ~2018
15789286813131578573626312 ~2018
15789664616331579329232712 ~2018
1579071175791339...70699315 2025
15791167505931582335011912 ~2018
15791669731131583339462312 ~2018
15791724991131583449982312 ~2018
15791797175931583594351912 ~2018
15799016411931598032823912 ~2019
15799799396331599598792712 ~2019
15802638560331605277120712 ~2019
15803694493131607388986312 ~2019
15804784163931609568327912 ~2019
15806360219931612720439912 ~2019
15807002432331614004864712 ~2019
15807215803131614431606312 ~2019
15807257510331614515020712 ~2019
15807367130331614734260712 ~2019
15808930874331617861748712 ~2019
15809701910331619403820712 ~2019
15810251065131620502130312 ~2019
Exponent Prime Factor Dig. Year
15811676099931623352199912 ~2019
15812108741931624217483912 ~2019
15812280769131624561538312 ~2019
15812318039931624636079912 ~2019
15812794277931625588555912 ~2019
15813731642331627463284712 ~2019
15814458787131628917574312 ~2019
15815523739131631047478312 ~2019
15815949164331631898328712 ~2019
15815960732331631921464712 ~2019
15817656343131635312686312 ~2019
15817758013131635516026312 ~2019
15817885951131635771902312 ~2019
15818730923931637461847912 ~2019
15818776237131637552474312 ~2019
15819851083131639702166312 ~2019
15820691930331641383860712 ~2019
15823444424331646888848712 ~2019
15824533628331649067256712 ~2019
1582571899676456...50653714 2024
15827449663131654899326312 ~2019
15830772973131661545946312 ~2019
15831133229931662266459912 ~2019
15832000909131664001818312 ~2019
15832659835131665319670312 ~2019
Exponent Prime Factor Dig. Year
15832712675931665425351912 ~2019
15836138630331672277260712 ~2019
15836706655131673413310312 ~2019
15836969665131673939330312 ~2019
15837201032331674402064712 ~2019
1583871076032914...79895314 2024
15839101109931678202219912 ~2019
15839331908331678663816712 ~2019
15840063674331680127348712 ~2019
15840502819131681005638312 ~2019
1584089416311752...44388715 2023
15841184881131682369762312 ~2019
15841617247131683234494312 ~2019
15842523881931685047763912 ~2019
15842673277131685346554312 ~2019
15843197261931686394523912 ~2019
15843937117131687874234312 ~2019
15844819165131689638330312 ~2019
15844849400331689698800712 ~2019
15846318974331692637948712 ~2019
1584648262513042...64019314 2024
15850030321131700060642312 ~2019
15852288740331704577480712 ~2019
15852864703131705729406312 ~2019
15853886767131707773534312 ~2019
Home
5.307.017 digits
e-mail
26-01-11