Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
19641362299139282724598312 ~2019
19642144075139284288150312 ~2019
1964220806891374...64823114 2024
19644998989139289997978312 ~2019
19645289621939290579243912 ~2019
19649199671939298399343912 ~2019
19652035627139304071254312 ~2019
19652773223939305546447912 ~2019
19653074267939306148535912 ~2019
19653083798339306167596712 ~2019
19653686888339307373776712 ~2019
19654184071139308368142312 ~2019
1965514461978451...86471114 2025
19655832092339311664184712 ~2019
19656327361139312654722312 ~2019
19656993005939313986011912 ~2019
19657939340339315878680712 ~2019
19659171857939318343715912 ~2019
19662514603139325029206312 ~2019
1966350499137078...96868114 2025
19665034595939330069191912 ~2019
19666327868339332655736712 ~2019
19666491047939332982095912 ~2019
19666893919139333787838312 ~2019
19667291522339334583044712 ~2019
Exponent Prime Factor Dig. Year
19669873616339339747232712 ~2019
1967215723912400...83170314 2024
19672549427939345098855912 ~2019
19673237785139346475570312 ~2019
19673726539139347453078312 ~2019
1967413506534367...84496714 2023
1967707401193305...33999314 2024
19677088982339354177964712 ~2019
1967726168471448...99939315 2024
19677510287939355020575912 ~2019
19678699766339357399532712 ~2019
19680910529939361821059912 ~2019
19683851252339367702504712 ~2019
19684392320339368784640712 ~2019
19684718762339369437524712 ~2019
19685685079139371370158312 ~2019
19686006871139372013742312 ~2019
19686131681939372263363912 ~2019
19688078611139376157222312 ~2019
19689595928339379191856712 ~2019
19692403561139384807122312 ~2019
19693706929139387413858312 ~2019
19693734560339387469120712 ~2019
19693785107939387570215912 ~2019
19696197091139392394182312 ~2019
Exponent Prime Factor Dig. Year
1969676530138154...34738314 2023
19697221049939394442099912 ~2019
19698954803939397909607912 ~2019
19698992747939397985495912 ~2019
19699203653939398407307912 ~2019
19700079853139400159706312 ~2019
1970048403372281...11024715 2025
19707046028339414092056712 ~2019
19707960341939415920683912 ~2019
19709244227939418488455912 ~2019
19709368178339418736356712 ~2019
1971126303971216...07107916 2025
19711892921939423785843912 ~2019
19714171267139428342534312 ~2019
19715367485939430734971912 ~2019
1971627165117610...57324714 2023
1971813189491321...69583115 2023
19718786095139437572190312 ~2019
19719560053139439120106312 ~2019
19720613765939441227531912 ~2019
19721739835139443479670312 ~2019
19721937716339443875432712 ~2019
19722172208339444344416712 ~2019
19722293933939444587867912 ~2019
19723116563939446233127912 ~2019
Exponent Prime Factor Dig. Year
19724818505939449637011912 ~2019
1972569742677862...42826315 2024
19726793597939453587195912 ~2019
19727834681939455669363912 ~2019
19731103682339462207364712 ~2019
19731107123939462214247912 ~2019
19732877303939465754607912 ~2019
19732979690339465959380712 ~2019
1973376113571697...57670314 2024
19734017192339468034384712 ~2019
19736608333139473216666312 ~2019
19738473545939476947091912 ~2019
19740861452339481722904712 ~2019
19741092175139482184350312 ~2019
19744207304339488414608712 ~2019
19744632583139489265166312 ~2019
19746074855939492149711912 ~2019
19747135712339494271424712 ~2019
19748172008339496344016712 ~2019
19749244213139498488426312 ~2019
19750978238339501956476712 ~2019
1975307709614108...35988914 2024
19755138379139510276758312 ~2019
1975541812731908...10971915 2024
19757286434339514572868712 ~2019
Home
5.247.179 digits
e-mail
25-12-14