Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2589981506891346...35828115 2025
25900245209951800490419912 ~2020
25904902211951809804423912 ~2020
25906211359151812422718312 ~2020
25908201098351816402196712 ~2020
25908692333951817384667912 ~2020
25908925421951817850843912 ~2020
25914686245151829372490312 ~2020
25914999140351829998280712 ~2020
25915133228351830266456712 ~2020
25915344614351830689228712 ~2020
25916779856351833559712712 ~2020
25924075760351848151520712 ~2020
25925548094351851096188712 ~2020
25927090376351854180752712 ~2020
25930168034351860336068712 ~2020
25931595203951863190407912 ~2020
2593171252012489...01929714 2024
25934109157151868218314312 ~2020
25934308021151868616042312 ~2020
25934377735151868755470312 ~2020
25935703627151871407254312 ~2020
2593600162191244...77851314 2024
25936476343151872952686312 ~2020
25936822286351873644572712 ~2020
Exponent Prime Factor Dig. Year
25937639813951875279627912 ~2020
25938445259951876890519912 ~2020
2593980065092075...52072114 2024
25942271935151884543870312 ~2020
25942377817151884755634312 ~2020
25949653418351899306836712 ~2020
25951853449151903706898312 ~2020
25952055257951904110515912 ~2020
25953901153151907802306312 ~2020
25955536898351911073796712 ~2020
25957013789951914027579912 ~2020
2595841750514277...48404915 2025
25960843037951921686075912 ~2020
25960908410351921816820712 ~2020
2596383577398516...33839314 2025
25965163813151930327626312 ~2020
25966938145151933876290312 ~2020
25969164845951938329691912 ~2020
25969328027951938656055912 ~2020
25971877976351943755952712 ~2020
2597310709671246...40641714 2024
25973426222351946852444712 ~2020
25975819681151951639362312 ~2020
25976053061951952106123912 ~2020
25979320639151958641278312 ~2020
Exponent Prime Factor Dig. Year
25979337973151958675946312 ~2020
25982765324351965530648712 ~2020
2598981832612650...69262314 2024
25990099981151980199962312 ~2020
2599307374977018...12419114 2025
25993151438351986302876712 ~2020
25993750915151987501830312 ~2020
25996492490351992984980712 ~2020
2599712497191923...47920714 2024
25999099015151998198030312 ~2020
26000237053152000474106312 ~2020
26004482977152008965954312 ~2020
26004506575152009013150312 ~2020
2601291393135597...80157715 2025
26012992898352025985796712 ~2020
26016714011952033428023912 ~2020
2601695638676868...86088914 2025
26018633036352037266072712 ~2020
26020855385952041710771912 ~2020
26020920746352041841492712 ~2020
2602235729532914...17073714 2024
26023807481952047614963912 ~2020
26024197465152048394930312 ~2020
26025196697952050393395912 ~2020
26026271288352052542576712 ~2020
Exponent Prime Factor Dig. Year
26026306313952052612627912 ~2020
26032193384352064386768712 ~2020
26033184794352066369588712 ~2020
26038304864352076609728712 ~2020
26040559541952081119083912 ~2020
2604129529971187...56663315 2025
2604288659894375...48615314 2025
26043177643152086355286312 ~2020
2604380047191250...22651314 2024
26047543225152095086450312 ~2020
26048025085152096050170312 ~2020
26048425019952096850039912 ~2020
26051204030352102408060712 ~2020
26052764557152105529114312 ~2020
26058363521952116727043912 ~2020
26063382122352126764244712 ~2020
26064795605952129591211912 ~2020
26067133721952134267443912 ~2020
26067763553952135527107912 ~2020
26069452487952138904975912 ~2020
26069884555152139769110312 ~2020
26071342073952142684147912 ~2020
2607255527996366...93515915 2025
26075627699952151255399912 ~2020
26076206653152152413306312 ~2020
Home
5.187.277 digits
e-mail
25-11-17