Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12512782757925025565515912 ~2018
12513625255125027250510312 ~2018
12513996305925027992611912 ~2018
12514097318325028194636712 ~2018
12516575816325033151632712 ~2018
12516925637925033851275912 ~2018
12516997583925033995167912 ~2018
12517042691925034085383912 ~2018
12517349015925034698031912 ~2018
12517719329925035438659912 ~2018
12518214350325036428700712 ~2018
12518533994325037067988712 ~2018
12519241411125038482822312 ~2018
12521209547925042419095912 ~2018
12522838094325045676188712 ~2018
12524076086325048152172712 ~2018
12525681211125051362422312 ~2018
12526058335125052116670312 ~2018
12526367438325052734876712 ~2018
12526663824175159982944712 ~2019
12527128069125054256138312 ~2018
12528434327925056868655912 ~2018
12528578315925057156631912 ~2018
12528981053925057962107912 ~2018
12530001223125060002446312 ~2018
Exponent Prime Factor Dig. Year
12530284795125060569590312 ~2018
12530386034325060772068712 ~2018
1253133608833809...70843314 2023
12531432305925062864611912 ~2018
12531835178325063670356712 ~2018
12531890281125063780562312 ~2018
12532019329125064038658312 ~2018
12532423115925064846231912 ~2018
12532713641925065427283912 ~2018
12532973820175197842920712 ~2019
12533375636325066751272712 ~2018
12534929005775209574034312 ~2019
12535292540325070585080712 ~2018
12535787137125071574274312 ~2018
12536003197125072006394312 ~2018
12536478383925072956767912 ~2018
12536529503925073059007912 ~2018
12539586512325079173024712 ~2018
12541790041125083580082312 ~2018
12541895714325083791428712 ~2018
12541921955925083843911912 ~2018
12543330005925086660011912 ~2018
12543917047775263502286312 ~2019
12545732359125091464718312 ~2018
12546378503925092757007912 ~2018
Exponent Prime Factor Dig. Year
12546642521925093285043912 ~2018
12547242580175283455480712 ~2019
12547922894325095845788712 ~2018
12548276735925096553471912 ~2018
12548345531925096691063912 ~2018
12549434807925098869615912 ~2018
12549774313125099548626312 ~2018
12549985931925099971863912 ~2018
12550075284175300451704712 ~2019
12550383929925100767859912 ~2018
1255162915313112...29968914 2024
12552785977125105571954312 ~2018
12553266650325106533300712 ~2018
12553840637925107681275912 ~2018
12554150113125108300226312 ~2018
12554155261125108310522312 ~2018
12554344531775326067190312 ~2019
12555788681925111577363912 ~2018
12556544918325113089836712 ~2018
12558818535775352911214312 ~2019
12559569037775357414226312 ~2019
12561483967125122967934312 ~2018
12562542044325125084088712 ~2018
12563028753775378172522312 ~2019
12563538380325127076760712 ~2018
Exponent Prime Factor Dig. Year
12563548285125127096570312 ~2018
12563641898325127283796712 ~2018
12564231617925128463235912 ~2018
12564499628325128999256712 ~2018
12564520874325129041748712 ~2018
12564615617375387693703912 ~2019
12565309201775391855210312 ~2019
12565336373925130672747912 ~2018
1256564839912337...02232714 2024
12565757132325131514264712 ~2018
12566334823125132669646312 ~2018
12569162947375414977683912 ~2019
12571116344325142232688712 ~2018
12571576106325143152212712 ~2018
12572709721125145419442312 ~2018
12572788544325145577088712 ~2018
12572855275125145710550312 ~2018
12573435413925146870827912 ~2018
12573871015125147742030312 ~2018
12573897097125147794194312 ~2018
12574598347775447590086312 ~2019
12574796453925149592907912 ~2018
12575804321925151608643912 ~2018
12575960125775455760754312 ~2019
12575992407775455954446312 ~2019
Home
5.247.179 digits
e-mail
25-12-14