Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11813216906323626433812712 ~2018
11813416615123626833230312 ~2018
11813470501123626941002312 ~2018
11813904503923627809007912 ~2018
11816143076323632286152712 ~2018
11816330099923632660199912 ~2018
11816477888323632955776712 ~2018
11817544058323635088116712 ~2018
11817772802323635545604712 ~2018
11819167210170915003260712 ~2019
11820248915923640497831912 ~2018
11820505201123641010402312 ~2018
11821378709923642757419912 ~2018
11821801833770930811002312 ~2019
11822391989923644783979912 ~2018
1182281580077093...80420114 2025
11823497933923646995867912 ~2018
11824951538323649903076712 ~2018
11824966145923649932291912 ~2018
11825864858323651729716712 ~2018
11828229907123656459814312 ~2018
11828299424323656598848712 ~2018
11830250198323660500396712 ~2018
11830430077123660860154312 ~2018
11830680740323661361480712 ~2018
Exponent Prime Factor Dig. Year
11831126798323662253596712 ~2018
11832007403923664014807912 ~2018
11832938326170997629956712 ~2019
11833272331770999633990312 ~2019
11833641312171001847872712 ~2019
11833851659923667703319912 ~2018
11835668384323671336768712 ~2018
1183630480992461...00459314 2024
11837119111123674238222312 ~2018
11837490811123674981622312 ~2018
11837886577123675773154312 ~2018
11837935711123675871422312 ~2018
11838585169123677170338312 ~2018
11838890318323677780636712 ~2018
11839527689923679055379912 ~2018
11840861843923681723687912 ~2018
11841012917923682025835912 ~2018
11841487940323682975880712 ~2018
11843250167923686500335912 ~2018
11843352554323686705108712 ~2018
1184356304994149...26849715 2025
11843860183371063161099912 ~2019
11844514751923689029503912 ~2018
11844539683123689079366312 ~2018
11844612483771067674902312 ~2019
Exponent Prime Factor Dig. Year
11845034302171070205812712 ~2019
11845618525123691237050312 ~2018
1184694832432843...97832114 2024
11847264392323694528784712 ~2018
11848475546323696951092712 ~2018
11849272681123698545362312 ~2018
11850884810323701769620712 ~2018
11851961765923703923531912 ~2018
11852116212171112697272712 ~2019
11852724347923705448695912 ~2018
11852959753123705919506312 ~2018
11853534242323707068484712 ~2018
11853675903771122055422312 ~2019
11853852301123707704602312 ~2018
11854704079123709408158312 ~2018
11855535326323711070652712 ~2018
11857982909923715965819912 ~2018
11859349369123718698738312 ~2018
11859812635123719625270312 ~2018
1185999861617021...80731314 2024
11860576837771163461026312 ~2019
11861034157123722068314312 ~2018
11861319547123722639094312 ~2018
11861673367123723346734312 ~2018
11862437424171174624544712 ~2019
Exponent Prime Factor Dig. Year
11863375043923726750087912 ~2018
11863506181771181037090312 ~2019
11865161912323730323824712 ~2018
11866525423123733050846312 ~2018
11867362751923734725503912 ~2018
1186777132213643...58847115 2026
11868429779923736859559912 ~2018
11869074365923738148731912 ~2018
11869282910323738565820712 ~2018
11869701672171218210032712 ~2019
11869976041123739952082312 ~2018
11870189921923740379843912 ~2018
11870289205123740578410312 ~2018
11870752352323741504704712 ~2018
11871697495123743394990312 ~2018
11871717035923743434071912 ~2018
11872000460323744000920712 ~2018
11872191266323744382532712 ~2018
11872312517923744625035912 ~2018
11873095435123746190870312 ~2018
11873539658323747079316712 ~2018
11874221026171245326156712 ~2019
11874430514323748861028712 ~2018
11874467737123748935474312 ~2018
11874488161123748976322312 ~2018
Home
5.307.017 digits
e-mail
26-01-11