Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10862364253121724728506312 ~2017
10862833717765177002306312 ~2018
10863189524321726379048712 ~2017
10863429367121726858734312 ~2017
10864223815121728447630312 ~2017
10864663552786917308421712 ~2019
10864698899365188193395912 ~2018
10865713706321731427412712 ~2017
10866570187121733140374312 ~2017
10867459133921734918267912 ~2017
10868164294786945314357712 ~2019
10868203538321736407076712 ~2017
10868352367121736704734312 ~2017
10868965334321737930668712 ~2017
10869149227121738298454312 ~2017
10869976979986959815839312 ~2019
10870186833765221121002312 ~2018
10870941230321741882460712 ~2017
10872392813921744785627912 ~2017
10872395402321744790804712 ~2017
10872792449921745584899912 ~2017
10873340143365240040859912 ~2018
10875520160321751040320712 ~2017
10875870041921751740083912 ~2017
10876184905121752369810312 ~2017
Exponent Prime Factor Dig. Year
10877660905787021287245712 ~2019
10877869591121755739182312 ~2017
10877913272321755826544712 ~2017
10878356900321756713800712 ~2017
10878528020321757056040712 ~2017
10878756941921757513883912 ~2017
10879194008321758388016712 ~2017
10880248951121760497902312 ~2017
10880836631921761673263912 ~2017
10881429968321762859936712 ~2017
10881478181921762956363912 ~2017
10881542723921763085447912 ~2017
10882141995765292851974312 ~2018
10882269217121764538434312 ~2017
10882636067921765272135912 ~2017
10883031859365298191155912 ~2018
1088433267772176...35540114 2024
10884600746987076805975312 ~2019
10884677545121769355090312 ~2017
10884710803121769421606312 ~2017
10885967669921771935339912 ~2017
10886263568321772527136712 ~2017
10886443865921772887731912 ~2017
10886828659121773657318312 ~2017
10887212701765323276210312 ~2018
Exponent Prime Factor Dig. Year
10887452003921774904007912 ~2017
10888231081121776462162312 ~2017
10888608757187108870056912 ~2019
10888974425921777948851912 ~2017
10889022167921778044335912 ~2017
10889124937365334749623912 ~2018
10889678123921779356247912 ~2017
10889790353921779580707912 ~2017
1089096358191047...65787915 2025
1089128519213920...69156114 2023
10891460261921782920523912 ~2017
10891851125921783702251912 ~2017
10892304194321784608388712 ~2017
10893051500321786103000712 ~2017
10893097874321786195748712 ~2017
10893452378321786904756712 ~2017
10893501487121787002974312 ~2017
10893844200165363065200712 ~2018
10894280981921788561963912 ~2017
10894416656321788833312712 ~2017
10894633636165367801816712 ~2018
10894665464321789330928712 ~2017
10894711040321789422080712 ~2017
10895685257921791370515912 ~2017
10895735899787165887197712 ~2019
Exponent Prime Factor Dig. Year
10895946283121791892566312 ~2017
10897894763921795789527912 ~2017
10897925353365387552119912 ~2018
10898262881921796525763912 ~2017
10898584658321797169316712 ~2017
10899029615365394177691912 ~2018
10899229874321798459748712 ~2017
10899467143121798934286312 ~2017
10900920359921801840719912 ~2017
10901546492321803092984712 ~2017
10901696366321803392732712 ~2017
10902481790321804963580712 ~2017
10902847721921805695443912 ~2017
10902932185121805864370312 ~2017
10903159169921806318339912 ~2017
10903630235987229041887312 ~2019
10904046476321808092952712 ~2017
10904207204321808414408712 ~2017
1090441213212529...14647314 2024
10904435417921808870835912 ~2017
10904780570321809561140712 ~2017
10905151633121810303266312 ~2017
10905373333121810746666312 ~2017
10905734023365434404139912 ~2018
10905785132321811570264712 ~2017
Home
5.247.179 digits
e-mail
25-12-14