Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14390372203128780744406312 ~2018
14390725652328781451304712 ~2018
14392442581128784885162312 ~2018
14392647505128785295010312 ~2018
14392822381128785644762312 ~2018
14393225545128786451090312 ~2018
14393692895928787385791912 ~2018
14393945849928787891699912 ~2018
1440000397132966...18087914 2024
1440008722695616...18491114 2024
14400365251128800730502312 ~2018
14400727067928801454135912 ~2018
14401000742328802001484712 ~2018
14401194907128802389814312 ~2018
14401486141128802972282312 ~2018
14403826465128807652930312 ~2018
14403907385928807814771912 ~2018
14403973339128807946678312 ~2018
14404758883128809517766312 ~2018
1440489285711524...42811915 2023
1440520829573111...91871314 2024
14405235302328810470604712 ~2018
14405747245128811494490312 ~2018
14405954669928811909339912 ~2018
14406440360328812880720712 ~2018
Exponent Prime Factor Dig. Year
14406542475786439254854312 ~2019
14406784821786440708930312 ~2019
14407163911128814327822312 ~2018
14408563760328817127520712 ~2018
14409008525928818017051912 ~2018
1441021123918905...45763914 2025
14410308629928820617259912 ~2018
14411671550328823343100712 ~2018
14411706973128823413946312 ~2018
1441268351036918...84944114 2025
14412900593928825801187912 ~2018
14413205911128826411822312 ~2018
14414836490328829672980712 ~2018
14415300655128830601310312 ~2018
14415315005928830630011912 ~2018
14415972383928831944767912 ~2018
14416421971128832843942312 ~2018
14416585505928833171011912 ~2018
14417140667928834281335912 ~2018
14417466680328834933360712 ~2018
1441791241633950...02066314 2024
14417988247128835976494312 ~2018
14418381343786510288062312 ~2019
14418439211928836878423912 ~2018
14418859808328837719616712 ~2018
Exponent Prime Factor Dig. Year
14419383084186516298504712 ~2019
14419401997128838803994312 ~2018
14419638401928839276803912 ~2018
14419940832186519644992712 ~2019
14420125886328840251772712 ~2018
14423286488328846572976712 ~2018
14424450247128848900494312 ~2018
14425312514328850625028712 ~2018
14425633430328851266860712 ~2018
14426112121128852224242312 ~2018
14426794778328853589556712 ~2018
14429589324186577535944712 ~2019
14430640973928861281947912 ~2018
14431248643128862497286312 ~2018
14432854555128865709110312 ~2018
14433758765928867517531912 ~2018
14434597166328869194332712 ~2018
14436795614328873591228712 ~2018
14437168610328874337220712 ~2018
14437915733928875831467912 ~2018
14438529325386631175951912 ~2019
14438871031128877742062312 ~2018
14439650387928879300775912 ~2018
14440009250328880018500712 ~2018
14440076341128880152682312 ~2018
Exponent Prime Factor Dig. Year
14441232284328882464568712 ~2018
14441507876328883015752712 ~2018
14442125876328884251752712 ~2018
14442755834328885511668712 ~2018
14443453357128886906714312 ~2018
14444031943128888063886312 ~2018
14445186422328890372844712 ~2018
14446211329128892422658312 ~2018
14446643857786679863146312 ~2019
14447486347128894972694312 ~2018
14447498972328894997944712 ~2018
14448125437128896250874312 ~2018
14448409897128896819794312 ~2018
14448422144328896844288712 ~2018
1444884203473120...79495314 2024
14449330703928898661407912 ~2018
14450220263386701321579912 ~2019
14451611965128903223930312 ~2018
1445461168314162...64732914 2024
14455419145128910838290312 ~2018
14455795865928911591731912 ~2018
1445685490332515...53174314 2024
14457643133928915286267912 ~2018
1445768052711763...24306314 2024
14458670261928917340523912 ~2018
Home
5.247.179 digits
e-mail
25-12-14