Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8771949397117543898794312 ~2017
8772773312317545546624712 ~2017
8772876739117545753478312 ~2017
8772983606317545967212712 ~2017
8773164895117546329790312 ~2017
8773767169117547534338312 ~2017
8774295248317548590496712 ~2017
8774695625917549391251912 ~2017
8775528841752653173050312 ~2018
8775590189917551180379912 ~2017
8776102016317552204032712 ~2017
8776848890317553697780712 ~2017
8777480809117554961618312 ~2017
8777805955752666835734312 ~2018
8777883497352667300983912 ~2018
877788931213563...60712714 2023
8778743618317557487236712 ~2017
8779160401117558320802312 ~2017
8779271616152675629696712 ~2018
8780423423917560846847912 ~2017
8780918411917561836823912 ~2017
8780978407117561956814312 ~2017
8781136199917562272399912 ~2017
8782889455117565778910312 ~2017
8782983061117565966122312 ~2017
Exponent Prime Factor Dig. Year
8783821159987838211599112 ~2018
8784185989170273487912912 ~2018
8784261841117568523682312 ~2017
8784335157752706010946312 ~2018
8784491605352706949631912 ~2018
8785610636317571221272712 ~2017
8787341294317574682588712 ~2017
8787525257917575050515912 ~2017
8788016534317576033068712 ~2017
8788277865187882778651112 ~2018
8788343636317576687272712 ~2017
8788420651352730523907912 ~2018
8788557860317577115720712 ~2017
8788648205917577296411912 ~2017
8789427493117578854986312 ~2017
8789761604317579523208712 ~2017
8790153889117580307778312 ~2017
8790505240152743031440712 ~2018
8790596174317581192348712 ~2017
8791132115917582264231912 ~2017
8791594633752749567802312 ~2018
8791671830317583343660712 ~2017
8792724398317585448796712 ~2017
8793540125917587080251912 ~2017
8794554007752767324046312 ~2018
Exponent Prime Factor Dig. Year
8796135919770369087357712 ~2018
8796530585917593061171912 ~2017
8796875099352781250595912 ~2018
8797059269352782355615912 ~2018
8797213825117594427650312 ~2017
8797408460317594816920712 ~2017
8797615891117595231782312 ~2017
8797670102317595340204712 ~2017
8797786450170382291600912 ~2018
8797871378317595742756712 ~2017
8799247177117598494354312 ~2017
8799873881917599747763912 ~2017
8799923951917599847903912 ~2017
8800040048317600080096712 ~2017
8800818080317601636160712 ~2017
8800958551352805751307912 ~2018
8801159329117602318658312 ~2017
8801220062317602440124712 ~2017
8801910559117603821118312 ~2017
8802260062152813560372712 ~2018
8802329131170418633048912 ~2018
8802549254317605098508712 ~2017
8803002593917606005187912 ~2017
8803154905117606309810312 ~2017
8803942345352823654071912 ~2018
Exponent Prime Factor Dig. Year
8804018304788040183047112 ~2018
8804891887117609783774312 ~2017
8805605426317611210852712 ~2017
8805794153917611588307912 ~2017
8806235993917612471987912 ~2017
8806519387117613038774312 ~2017
8806635548317613271096712 ~2017
8806865683117613731366312 ~2017
8806922650388069226503112 ~2018
8806928531917613857063912 ~2017
8807809163917615618327912 ~2017
8808036709352848220255912 ~2018
8808062930317616125860712 ~2017
8809334875117618669750312 ~2017
8809397849917618795699912 ~2017
8809595714317619191428712 ~2017
8809642028317619284056712 ~2017
8810273726317620547452712 ~2017
8810797343352864784059912 ~2018
8812754567352876527403912 ~2018
8812882905752877297434312 ~2018
8813333915917626667831912 ~2017
8813515157917627030315912 ~2017
8813598692970508789543312 ~2018
8813730569917627461139912 ~2017
Home
5.366.787 digits
e-mail
26-02-08